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Background

A Petri net is a graphical tool for the description and analysis of
concurrent process...m

day

sunrise sunset

night
Figure: The circle of life.

[1] C. A. Petri and W. Reisig, “Petri net,” Scholarpedia, 3(4):6477, 2008.

[2] M. Silva, “50 years after the PhD thesis of Carl Adam Petri: A
perspective,” in Preprints of the 11th International Workshop on Discrete
Event Systems, pp. 13-20, Guadalajara, Mexico, October 3rd - 5th, 2012.
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Figure: A histogram of the numbers of SCI papers on Petri nets in the past
40 vyears.
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Figure: A deadlock between two oxen. (Picture from Internet)
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What we face;:

@ Siphon structures do not consider weight information;

@ How can we extend siphon-based methods to control generalized
Petri nets;

@ Controlled generalized Petri nets with Siphon-based methods
limit strongly the system behavior.

What we want:

@ A new kind of structural objects tied with deadlock-freedom and
liveness;

@ A new policy for deadlock-control/liveness-enforcement.
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Figure: A WS3PR and its WSDC.

@ A structural object carrying weight information;
@ A structure intuitively reflecting circular waits;

@ A numerical relationship between initial marking and arc weights.
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Figure: A WSDC.

@ A subnet consisting of places, transitions, their arcs, and weights;

@ A competition path tyrts;

r2

@ The upstream activity place p;?, and downstream one pg -

compete against each other.
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Figure: A revised dining philosopher problem modeled by WS3PR with a
unique WSDC.
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Main results:

Restriction 1

Given a resource place r, it satisfies the following two conditions:
(1) (Mo(r) mod Wim(r)) > Wf”t(r), where My(r) is the initial marking
of r, and w,.'"(r) (resp. Wf”t(r)) is the in-arc (resp. out-arc) weight of
the ith competition path in Lyy/; and

(2) There exists no such an n—dimensional row vector

A=1a; ... a; ... ap] such that

0 < (Mo(r) — A[WM]T) < min{wiour(r)}, where a; € N.

A marked WS3PR (N, My) is live if every WSDC satisfies Restriction
1.
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Figure: A Live WS3PR with all WSDCs satisfying Restriction 1.
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The meaning of the work:

@ A new method to prevent deadlocks;

@ Need no external controller;

e Enforcing liveness by increasing or decreasing the numbers of
resources.
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Figure: ILS and siphon.
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Main results:

A siphon S in a marked WS3PR is never insufficiently marked if all
WSDCs contained in it satisfy Restriction 1.

A siphon in a marked WS3PR is minimally controlled if all WSDCs
contained in it satisfy Restriction 1.
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Figure: A WS3PR with 6 resource places.
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A set of elementary siphons chosen from all 31 strict minimal ones
need to be controlled:

S16 = 4ps + 3ps, Mo(Vs16) = 10 — 6 = 4;

Soa = pa+ ps, Mo(Vsag) =6 — 4 =2;

S5 =2ps + p3, Mo(Vspg) =6 — 4 = 2;

S29 = 3p10 + p11 + p12 + p13, Mo(Vsag) =7 — 4 =3;
S30 = 3p10 + p11, Mo(Vs30) =6 —3 = 3; and

S31 = p12 + p13, Mo(Vs31) =6 —4=2.
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By checking all WSDCs in every elementary siphon, the elementary
siphons really need to be controlled:

So4 = pa+ ps, Mo(Vs2a) =6 —4=2;

S29 = 3p10 + p11 + p12 + p13, Mo(Vsag) =7 — 4 =3;

= = =3; and

S31 = p12 + p13, Mo(Vs31) =6 —4=2.
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The meaning of the work:

@ Enlarge the application scope of ILS-based method,;

@ Improve the siphon-based methods;

@ Obtain more reachable states with less control costs.
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Figure: Liveness and ratio-enforcing supervisor.
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Basic ideas:

@ Impose a well-designed supervisor with intrinsically live structures
to break the chain of circular waits;

@ Consider the resource usage ratios of upstream and downstream
activity places and the relation between them.

M(pup) - w")

)\I’*)Pup =

Mo(l’)
)\r—>pdown = M(pdown) : WOUt(r)
Mo(r)
Mo(f') o
| =1i)- W(r,t)
M,
yop — W) ie{o12..., | el

Mo(r)
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Restriction 2

Given WS3PR (N, Mp), a resource place r satisfies the following two
conditions:

(1) 1 — max A\ Puwi > mip\"—Pdowni; and

(2) 1 =370 AT 7Pwi > min{mipA" 7 Pdowni} if 1 — S0 0 ATPui > 0;
where p,pi and pgowni are upstream and downstream activity places
with respect to every competition path containing r,

A Pupi [max)\rﬁpup, O]A'ﬁpupi

A" Pdowni € [max A\ —*Pdowni O]\ P4 “and n is the number of columns
of weight matrix representing n competition paths with the same
resource place r.
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Figure: A WSDC with an LRS monitor.

@ Design a control path satisfying Restriction 2;
@ Impose the control path to a competition one;

@ Manipulate the resource allocation.

25
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@

Figure: A control path and an LRS monitor.

min Mo(v) + w(v)

S. t.
. J— [ r_>p jown
MO(V) _ Win(v) . LMO(r) (1 .n,Z:;nA o ) Z Wout(v)
wi
Mo(V) Z 1
in(v) > Wout(v) +1

w
Wout( v) >1
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Figure: LRS and siphon-monitor.

@ The basic ideas are different;
@ The structural objects are different;
@ The size of supervisors are different;

@ Resource usage ratio and parameters.
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(b)

Figure: An S3PR net model and its LRS monitors.
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Table: A case study of the S3PR net with LRS monitors

out(v)

case (i) Mo(PR) My (V) win(V) % states percentage

0 5r + 2r, + 41 / 7 7 1853

1 5 +2r+4r3 9y +7v w1 =2 wout(v) — 1 1645 100%
winv) — 5 wout(va) — 1

2 4 +2m +4rs  Tvi+Tv w1 =2 wout(v1) — 1 1147 69.73%
win(v2) _ 5 wout(v) _ 1

3 3n+2rm 443 Sy +T7v,  w1) =2 wout(v1) — 1 732 44.50%
win(v2) — o wout(va) — 1

4 21 +2r +4r;3  3v +7vw  w) =2 weut(v) — 1 400 24.32%
win(v2) — 2 wout(va) — 1

5 5 +2r +4r3 9w +8w  w(V1) =2 wout(v) = 1 1407 85.53%
win(v2) =3 wout(va) — 1
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The meaning of the work:

The size of an LRS is bounded by the number of resource places;

@ No new problematic structures generated,;

@ Parameterized controller;

Intuitive and easy to understand.
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Figure: A schematic diagram of D&C.



Figure: Control subnets.
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Figure: A unique subnet. 34/55



Figure: Decomposition of a subnet.
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Table: Different control effects of the LRS monitor v3 with different control

percentages

100.00%

97.22%

t t
5 q/)] 8
v, e\[]t
7

(b)

60.00%

40.00%

—
o

20.00%

0.00%

1/7

2/7

3/7

47

5/7

6/7 MaxA™’™

parameters.
admissible range \4—Pg Mo(v3) win(v3) wout(va) all reachable states percentage live
1,0/ P8 i 7 7 7 933, 112 100%  No
6/7,0]"4 P8 6/7 13 2 1 907, 192 97.22% Yes
5/7,0]47P8 5/7 17 3 1 855, 352 91.67%  Yes
4/7,0]% P8 4/7 19 4 1 777,592 83.33%  Yes
3/7,0] P8 3/7 19 5 1 673, 912 72.22%  Yes
2/7,0] P8 2/7 17 6 1 544,312 58.33%  Yes
1/7,0] P8 1/7 13 7 1 388, 792 41.47%  Yes
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The meaning of the work:
o Analyze and control large-size WS3PR net models;

@ Precisely locate and control the genuine structures contributing

to non-liveness;

@ Reduce control cost with simple and parameterized controllers.
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Figure: MIP and LRS.
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’ Solve Problem 2 ‘
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Y

Add an LRS monitor by solving
Problem 1

Figure: A schematic diagram of the iterative method.

40 /55



Figure: An iterative control of a WS3PR net model.
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Table: Details of the iterative control of the WS3PR net model.

MIM siphon obtained by MIP 7 Vi reachable states dead states live transitions
/ 7 3,334, 653 30 0
{ps, Pz, P10, P12, P13, P15, P16, P17, P18, P19} P19 Vi 2,663, 888 6 0
{P6, P7, P11, P12, P13, P15, P16, P17, P18 } P15 v2 2,613, 824 1 0
{P6, P7, P11, P12, P13, P16, P17, P18 } P17 v3 2,500, 037 0 14
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The meaning of the work:

@ Avoid the enumeration of all WSDCs;

@ Improve the computational efficiency;

@ The number of iterations is bounded by that of resource places.
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Figure: ILS in GS3PR.
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Figure: GS3PR and ILS.
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Figure: GS3PR and extended WSDCs.
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Ta ble: A Comparison between the control effects of the elementary siphons-based method (ES) and the intrinsically
live structures-based one (ILS) in this work for the GS3PR net model.

Description Mo(PR) Mo(V) Arcs and weights of moni- [R(N, Mo)| Live
tors
Original net: without control 12pg + p1o + 8p11 / / 234 No
ES by connecting output arcs 12pg + p1o + 8p11 11v; + 5w W(vy, t1) = W(tp, v1) =2, 124 Yes
of monitors to source transi- W(vy, ts) = W(t7,v1) =1,
tions W(vp, t1) = W(ts, vo) =1,
W(vz, ts) = W(ts, v2) = 3
ES with a rearrangement of 12pg + p1o + 8p11 11vy + 5wy W(vy, t1) = W(tx, v1) =2, 168 Yes
output arcs of monitors W(vy, tg) = W(t7,v1) =1,
W(vp, o) = W(t3, vp) = 1,
W(vz, ts) = W(ts, v2) = 3
ILS by removing 1 token from 11pg + p1o + 8p11 / / 206 Yes
P9
ILS by adding 1 token in pg 13pg + p1o + 8p11 / / 242 Yes
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The meaning of the work:

@ Extend the ILS-based method to a more general subclass of Petri
nets;

@ Extend the concepts of WSDCs and competition paths;

@ Provide a deeper insight into structures of more general Petri
nets.
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Concluding Remarks

A Extending in more general subclasses
LRS for GS*PR
ILS in GS*PR
ILS in WS’PR
LRS for WS®PR
D&C paradigm for
WS*PR

Figure: Main work.
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Conclusion:

@ Numerical relationship in generalized Petri nets;

@ Intrinsically live structure — ILS;

@ Liveness and ratio-enforcing supervisor — LRS.
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Future work:

@ Characteristics of ILS in state space;

@ Optimal design of LRS;

@ ILS in ROPN.
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Work in progress:

Figure: A process-oriented Petri net model and a resource-oriented one.
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Thanks for your attention!

Questions?

ding.liu@cnam.fr
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