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Background

Petri nets

A Petri net is a graphical tool for the description and analysis of
concurrent process...[1]

day

night

sunsetsunrise

Figure: The circle of life.

[1] C. A. Petri and W. Reisig, “Petri net,” Scholarpedia, 3(4):6477, 2008.

[2] M. Silva, “50 years after the PhD thesis of Carl Adam Petri: A
perspective,” in Preprints of the 11th International Workshop on Discrete
Event Systems, pp. 13–20, Guadalajara, Mexico, October 3rd - 5th, 2012.
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Figure: A histogram of the numbers of SCI papers on Petri nets in the past
40 years.
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Figure: A deadlock between two oxen. (Picture from Internet)
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Motivation

What we face:

Siphon structures do not consider weight information;

How can we extend siphon-based methods to control generalized
Petri nets;

Controlled generalized Petri nets with Siphon-based methods
limit strongly the system behavior.

What we want:

A new kind of structural objects tied with deadlock-freedom and
liveness;

A new policy for deadlock-control/liveness-enforcement.
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Main Work

ILS in GS3PRILS & siphons

LRS

D&C

MIP & LRS

ILS in WS3PR

Figure: All work.
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D&C

MIP & LRS

ILS in WS3PR

Figure: Intrinsically live structure.
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Figure: A WS3PR and its WSDC.

A structural object carrying weight information;

A structure intuitively reflecting circular waits;

A numerical relationship between initial marking and arc weights.
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Figure: A WSDC.

A subnet consisting of places, transitions, their arcs, and weights;

A competition path t2r2t3;

The upstream activity place pr2
up and downstream one pr2

down
compete against each other.
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Main results:

Restriction 1

Given a resource place r , it satisfies the following two conditions:

(1) (M0(r) mod w
in(r)
i ) ≥ w

out(r)
i , where M0(r) is the initial marking

of r , and w
in(r)
i (resp. w

out(r)
i ) is the in-arc (resp. out-arc) weight of

the ith competition path in LW ; and
(2) There exists no such an n−dimensional row vector
A = [a1 . . . ai . . . an] such that

0 ≤ (M0(r)− A[Win(r)]T ) < min{wout(r)
i }, where ai ∈ N.

Theorem 1

A marked WS3PR (N,M0) is live if every WSDC satisfies Restriction
1.
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Figure: A Live WS3PR with all WSDCs satisfying Restriction 1.
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The meaning of the work:

A new method to prevent deadlocks;

Need no external controller;

Enforcing liveness by increasing or decreasing the numbers of
resources.
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ILS in GS3PRILS & siphons

LRS

D&C

MIP & LRS

ILS in WS3PR

Figure: ILS and siphon.
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Main results:

Theorem 2

A siphon S in a marked WS3PR is never insufficiently marked if all
WSDCs contained in it satisfy Restriction 1.

Theorem 3

A siphon in a marked WS3PR is minimally controlled if all WSDCs
contained in it satisfy Restriction 1.
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A set of elementary siphons chosen from all 31 strict minimal ones
need to be controlled:

S16 = 4p6 + 3p9, M0(VS16) = 10− 6 = 4;

S24 = p4 + p5, M0(VS24) = 6− 4 = 2;

S28 = 2p2 + p3, M0(VS28) = 6− 4 = 2;

S29 = 3p10 + p11 + p12 + p13, M0(VS29) = 7− 4 = 3;

S30 = 3p10 + p11, M0(VS30) = 6− 3 = 3; and

S31 = p12 + p13, M0(VS31) = 6− 4 = 2.
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By checking all WSDCs in every elementary siphon, the elementary
siphons really need to be controlled:

S16 = 4p6 + 3p9, M0(VS16) = 10− 6 = 4;

S24 = p4 + p5, M0(VS24) = 6− 4 = 2;

S28 = 2p2 + p3, M0(VS28) = 6− 4 = 2;

S29 = 3p10 + p11 + p12 + p13, M0(VS29) = 7− 4 = 3;

S30 = 3p10 + p11, M0(VS30) = 6− 3 = 3; and

S31 = p12 + p13, M0(VS31) = 6− 4 = 2.
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The meaning of the work:

Enlarge the application scope of ILS-based method;

Improve the siphon-based methods;

Obtain more reachable states with less control costs.
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ILS in GS3PRILS & siphons
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D&C

MIP & LRS

ILS in WS3PR

Figure: Liveness and ratio-enforcing supervisor.
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Basic ideas:

Impose a well-designed supervisor with intrinsically live structures
to break the chain of circular waits;

Consider the resource usage ratios of upstream and downstream
activity places and the relation between them.

λr→pup =
M(pup) · w in(r)

M0(r)

λr→pdown =
M(pdown) · wout(r)

M0(r)

λr→p
i =

(b M0(r)

W (r , t)
c − i) ·W (r , t)

M0(r)
, i ∈ {0, 1, 2, . . . , b M0(r)

W (r , t)
c}
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Restriction 2

Given WS3PR (N,M0), a resource place r satisfies the following two
conditions:
(1) 1−maxλr→pupi ≥ minλr→pdowni ; and
(2) 1−

∑n
i=1 λ

r→pupi ≥ min{minλr→pdowni}, if 1−
∑n

i=1 λ
r→pupi > 0;

where pupi and pdowni are upstream and downstream activity places
with respect to every competition path containing r ,
λr→pupi ∈ [maxλr→pupi , 0]λ

r→pupi
,

λr→pdowni ∈ [maxλr→pdowni , 0]λ
r→pdowni , and n is the number of columns

of weight matrix representing n competition paths with the same
resource place r .
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Design a control path satisfying Restriction 2;

Impose the control path to a competition one;

Manipulate the resource allocation.
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

minM0(v) + w in(v)

s. t.

M0(v)− w in(v) · bM0(r) · (1−minλr→pdown)

w in(r)
c ≥ wout(v)

M0(v) ≥ 1

w in(v) ≥ wout(v) + 1

wout(v) ≥ 1
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Figure: LRS and siphon-monitor.

The basic ideas are different;

The structural objects are different;

The size of supervisors are different;

Resource usage ratio and parameters.
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Table: A case study of the S3PR net with LRS monitors

case (i) M0(PR ) M0(V ) w in(v) wout(v) states percentage
0 5r1 + 2r2 + 4r3 / / / 1853 /

1 5r1 + 2r2 + 4r3 9v1 + 7v2 w in(v1) = 2
w in(v2) = 2

wout(v1) = 1
wout(v2) = 1

1645 100%

2 4r1 + 2r2 + 4r3 7v1 + 7v2 w in(v1) = 2
w in(v2) = 2

wout(v1) = 1
wout(v2) = 1

1147 69.73%

3 3r1 + 2r2 + 4r3 5v1 + 7v2 w in(v1) = 2
w in(v2) = 2

wout(v1) = 1
wout(v2) = 1

732 44.50%

4 2r1 + 2r2 + 4r3 3v1 + 7v2 w in(v1) = 2
w in(v2) = 2

wout(v1) = 1
wout(v2) = 1

400 24.32%

5 5r1 + 2r2 + 4r3 9v1 + 8v2 w in(v1) = 2
w in(v2) = 3

wout(v1) = 1
wout(v2) = 1

1407 85.53%
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The meaning of the work:

The size of an LRS is bounded by the number of resource places;

No new problematic structures generated;

Parameterized controller;

Intuitive and easy to understand.
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Figure: Divide-and-Conquer.
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Table: Different control effects of the LRS monitor v3 with different control
parameters.

admissible range λr4→p8 M0(v3) w in(v3) wout(v3) all reachable states percentage live
[1, 0]r4→p8 1 / / / 933, 112 100% No
[6/7, 0]r4→p8 6/7 13 2 1 907, 192 97.22% Yes
[5/7, 0]r4→p8 5/7 17 3 1 855, 352 91.67% Yes
[4/7, 0]r4→p8 4/7 19 4 1 777, 592 83.33% Yes
[3/7, 0]r4→p8 3/7 19 5 1 673, 912 72.22% Yes
[2/7, 0]r4→p8 2/7 17 6 1 544, 312 58.33% Yes
[1/7, 0]r4→p8 1/7 13 7 1 388, 792 41.47% Yes
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The meaning of the work:

Analyze and control large-size WS3PR net models;

Precisely locate and control the genuine structures contributing
to non-liveness;

Reduce control cost with simple and parameterized controllers.
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Figure: MIP and LRS.
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Solve Problem 2

SD exists ?

Add an LRS monitor by solving 
Problem 1
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End

Figure: A schematic diagram of the iterative method.
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Table: Details of the iterative control of the WS3PR net model.

MIM siphon obtained by MIP ri vi reachable states dead states live transitions
/ / / 3, 334, 653 30 0

{p5, p7, p10, p12, p13, p15, p16, p17, p18, p19} p19 v1 2, 663, 888 6 0
{p6, p7, p11, p12, p13, p15, p16, p17, p18} p15 v2 2, 613, 824 1 0

{p6, p7, p11, p12, p13, p16, p17, p18} p17 v3 2, 500, 037 0 14
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The meaning of the work:

Avoid the enumeration of all WSDCs;

Improve the computational efficiency;

The number of iterations is bounded by that of resource places.
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Figure: ILS in GS3PR.
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Table: A Comparison between the control effects of the elementary siphons-based method (ES) and the intrinsically

live structures-based one (ILS) in this work for the GS3PR net model.

Description M0(PR ) M0(V ) Arcs and weights of moni-
tors

|R(N,M0)| Live

Original net: without control 12p9 + p10 + 8p11 / / 234 No
ES by connecting output arcs
of monitors to source transi-
tions

12p9 + p10 + 8p11 11v1 + 5v2 W (v1, t1) = W (t2, v1) = 2,
W (v1, t5) = W (t7, v1) = 1,
W (v2, t1) = W (t3, v2) = 1,
W (v2, t5) = W (t6, v2) = 3

124 Yes

ES with a rearrangement of
output arcs of monitors

12p9 + p10 + 8p11 11v1 + 5v2 W (v1, t1) = W (t2, v1) = 2,
W (v1, t6) = W (t7, v1) = 1,
W (v2, t2) = W (t3, v2) = 1,
W (v2, t5) = W (t6, v2) = 3

168 Yes

ILS by removing 1 token from
p9

11p9 + p10 + 8p11 / / 206 Yes

ILS by adding 1 token in p9 13p9 + p10 + 8p11 / / 242 Yes

47 / 55



The meaning of the work:

Extend the ILS-based method to a more general subclass of Petri
nets;

Extend the concepts of WSDCs and competition paths;

Provide a deeper insight into structures of more general Petri
nets.
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Concluding Remarks
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Figure: Main work.
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Conclusion:

Numerical relationship in generalized Petri nets;

Intrinsically live structure – ILS;

Liveness and ratio-enforcing supervisor – LRS.
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Future work:

Characteristics of ILS in state space;

Optimal design of LRS;

ILS in ROPN.
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Work in progress:
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Figure: A process-oriented Petri net model and a resource-oriented one.
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Thanks for your attention!

Questions?

ding.liu@cnam.fr
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