Intrinsically Live Structure and Deadlock Control in Generalized Petri Nets Modeling Flexible Manufacturing Systems

Ding Liu¹,

joint work with Kamel Barkaoui², & MengChu Zhou³

- ¹ Xidian University, China
- ² Cedric, Cnam, France
- ³ NJIT, USA

January 18, 2013

Background

Petri nets

A Petri net is a graphical tool for the description and analysis of concurrent process... $^{\left[1\right] }$

Figure: The circle of life.

[1] C. A. Petri and W. Reisig, "Petri net," Scholarpedia, 3(4):6477, 2008.

[2] M. Silva, "50 years after the PhD thesis of Carl Adam Petri: A perspective," in *Preprints of the 11th International Workshop on Discrete Event Systems*, pp. 13–20, Guadalajara, Mexico, October 3rd - 5th, 2012.

Figure: A histogram of the numbers of SCI papers on Petri nets in the past 40 years.

Figure: A deadlock between two oxen. (Picture from Internet)

(a)

Figure: Oxen and Petri nets.

What we face:

- Siphon structures do not consider weight information;
- How can we extend siphon-based methods to control generalized Petri nets;
- Controlled generalized Petri nets with Siphon-based methods limit strongly the system behavior.

What we want:

- A new kind of structural objects tied with deadlock-freedom and liveness;
- A new policy for deadlock-control/liveness-enforcement.

Figure: All work.

Figure: Intrinsically live structure.

Figure: A WS³PR and its WSDC.

- A structural object carrying weight information;
- A structure intuitively reflecting circular waits;
- A numerical relationship between initial marking and arc weights.

Figure: A WSDC.

- A subnet consisting of places, transitions, their arcs, and weights;
- A competition path $t_2r_2t_3$;
- The upstream activity place $p_{up}^{r_2}$ and downstream one $p_{down}^{r_2}$ compete against each other.

Figure: A revised dining philosopher problem modeled by WS^3PR with a unique WSDC.

Main results:

Restriction 1

Given a resource place r, it satisfies the following two conditions: (1) $(M_0(r) \mod w_i^{in(r)}) \ge w_i^{out(r)}$, where $M_0(r)$ is the initial marking of r, and $w_i^{in(r)}$ (resp. $w_i^{out(r)}$) is the in-arc (resp. out-arc) weight of the *i*th competition path in \mathbf{L}_W ; and (2) There exists no such an n-dimensional row vector $\mathbf{A} = [a_1 \ \dots \ a_i \ \dots \ a_n]$ such that $0 \le (M_0(r) - \mathbf{A}[\mathbf{W}^{in(r)}]^T) < \min\{w_i^{out(r)}\}$, where $a_i \in \mathbb{N}$.

Theorem 1

A marked WS³PR (N, M_0) is live if every WSDC satisfies Restriction 1.

Figure: A Live WS³PR with all WSDCs satisfying Restriction 1.

The meaning of the work:

- A new method to prevent deadlocks;
- Need no external controller;
- Enforcing liveness by increasing or decreasing the numbers of resources.

Figure: ILS and siphon.

Main results:

Theorem 2

A siphon S in a marked WS³PR is never insufficiently marked if all WSDCs contained in it satisfy Restriction 1.

Theorem 3

A siphon in a marked WS^3PR is minimally controlled if all WSDCs contained in it satisfy Restriction 1.

Figure: A WS³PR with 6 resource places.

A set of elementary siphons chosen from all 31 strict minimal ones need to be controlled:

$$\overline{S}_{16} = 4p_6 + 3p_9, \ M_0(V_{S16}) = 10 - 6 = 4;$$

$$\overline{S}_{24} = p_4 + p_5, \ M_0(V_{S24}) = 6 - 4 = 2;$$

$$\overline{S}_{28} = 2p_2 + p_3, \ M_0(V_{S28}) = 6 - 4 = 2;$$

$$\overline{S}_{29} = 3p_{10} + p_{11} + p_{12} + p_{13}, \ M_0(V_{S29}) = 7 - 4 = 3;$$

$$\overline{S}_{30} = 3p_{10} + p_{11}, \ M_0(V_{S30}) = 6 - 3 = 3; \text{ and}$$

$$\overline{S}_{31} = p_{12} + p_{13}, \ M_0(V_{S31}) = 6 - 4 = 2.$$

By checking all WSDCs in every elementary siphon, the elementary siphons really need to be controlled:

$$\overline{S}_{16} = 4p_6 + 3p_9, \ M_0(V_{516}) = 10 - 6 = 4;$$

$$\overline{S}_{24} = p_4 + p_5, \ M_0(V_{524}) = 6 - 4 = 2;$$

$$\overline{S}_{28} = 2p_2 + p_3, \ M_0(V_{528}) = 6 - 4 = 2;$$

$$\overline{S}_{29} = 3p_{10} + p_{11} + p_{12} + p_{13}, \ M_0(V_{529}) = 7 - 4 = 3;$$

$$\overline{S}_{30} = 3p_{10} + p_{11}, \ M_0(V_{530}) = 6 - 3 = 3; \text{ and}$$

$$\overline{S}_{31} = p_{12} + p_{13}, \ M_0(V_{531}) = 6 - 4 = 2.$$

The meaning of the work:

- Enlarge the application scope of ILS-based method;
- Improve the siphon-based methods;
- Obtain more reachable states with less control costs.

Figure: Liveness and ratio-enforcing supervisor.

Basic ideas:

- Impose a well-designed supervisor with intrinsically live structures to break the chain of circular waits;
- Consider the resource usage ratios of upstream and downstream activity places and the relation between them.

$$\lambda^{r \to p_{up}} = \frac{M(p_{up}) \cdot w^{in(r)}}{M_0(r)}$$
$$\lambda^{r \to p_{down}} = \frac{M(p_{down}) \cdot w^{out(r)}}{M_0(r)}$$
$$\lambda_i^{r \to p} = \frac{\left(\lfloor \frac{M_0(r)}{W(r,t)} \rfloor - i\right) \cdot W(r,t)}{M_0(r)}, \ i \in \{0, 1, 2, \dots, \lfloor \frac{M_0(r)}{W(r,t)} \rfloor\}$$

Restriction 2

Given WS³PR (N, M_0), a resource place r satisfies the following two conditions:

(1) $1 - \max \lambda^{r \to p_{upi}} \ge \min \lambda^{r \to p_{downi}}$; and (2) $1 - \sum_{i=1}^{n} \lambda^{r \to p_{upi}} \ge \min \{\min \lambda^{r \to p_{downi}}\}$, if $1 - \sum_{i=1}^{n} \lambda^{r \to p_{upi}} > 0$; where p_{upi} and p_{downi} are upstream and downstream activity places with respect to every competition path containing r, $\lambda^{r \to p_{upi}} \in [\max \lambda^{r \to p_{upi}}, 0]^{\lambda^{r \to p_{upi}}}$, $\lambda^{r \to p_{downi}} \in [\max \lambda^{r \to p_{downi}}, 0]^{\lambda^{r \to p_{downi}}}$, and n is the number of columns of weight matrix representing n competition paths with the same resource place r.

Figure: A WSDC with an LRS monitor.

- Design a control path satisfying Restriction 2;
- Impose the control path to a competition one;
- Manipulate the resource allocation.

Figure: A control path and an LRS monitor.

$$\begin{cases} \min M_0(v) + w^{in(v)} \\ s. t. \\ M_0(v) - w^{in(v)} \cdot \lfloor \frac{M_0(r) \cdot (1 - \min\lambda^{r \to p_{down}})}{w^{in(r)}} \rfloor \ge w^{out(v)} \\ M_0(v) \ge 1 \\ w^{in(v)} \ge w^{out(v)} + 1 \\ w^{out(v)} \ge 1 \end{cases}$$

Figure: LRS and siphon-monitor.

- The basic ideas are different;
- The structural objects are different;
- The size of supervisors are different;
- Resource usage ratio and parameters.

Figure: An S³PR net model and its LRS monitors.

Table: A case study of the S³PR net with LRS monitors

case (i)	$M_0(P_R)$	$M_0(V)$	w ^{in(v)}	w ^{out(v)}	states	percentage
0	$5r_1 + 2r_2 + 4r_3$	/	/	/	1853	/
1	$5r_1 + 2r_2 + 4r_3$	$9v_1 + 7v_2$	$w^{in(v_1)} = 2$ $w^{in(v_2)} = 2$	$w^{out(v_1)} = 1$ $w^{out(v_2)} = 1$	1645	100%
2	$4r_1 + 2r_2 + 4r_3$	$7v_1 + 7v_2$	$w^{in(v_1)}_{in(v_2)} = 2$	$w^{out(v_1)} = 1$ $w^{out(v_2)} = 1$	1147	69.73%
3	$3r_1 + 2r_2 + 4r_3$	$5v_1 + 7v_2$	$w^{in(v_1)} = 2$ $w^{in(v_2)} = 2$	$w^{out(v_1)} = 1$ $w^{out(v_2)} = 1$	732	44.50%
4	$2r_1 + 2r_2 + 4r_3$	$3v_1 + 7v_2$	$w^{in(v_1)} = 2$ $w^{in(v_1)} = 2$ $w^{in(v_2)} = 2$	$w^{out(v_1)} = 1$ $w^{out(v_2)} = 1$	400	24.32%
5	$5r_1 + 2r_2 + 4r_3$	$9v_1 + 8v_2$	$w^{in(v_1)} = 2$ $w^{in(v_1)} = 2$ $w^{in(v_2)} = 3$	$w^{out(v_1)} = 1$ $w^{out(v_2)} = 1$	1407	85.53%

The meaning of the work:

- The size of an LRS is bounded by the number of resource places;
- No new problematic structures generated;
- Parameterized controller;
- Intuitive and easy to understand.

Figure: Divide-and-Conquer.

Figure: A schematic diagram of D&C.

Figure: Control subnets.

Figure: A unique subnet.

Figure: Decomposition of a subnet.

(c)

Table: Different control effects of the LRS monitor v_3 with different control parameters.

admissible range	$\lambda^{r_4 \rightarrow p_8}$	$M_0(v_3)$	w ^{in(v3)}	w ^{out(v3)}	all reachable states	percentage	live
$[1, 0]^{r_4 \rightarrow p_8}$	1	/	/	/	933, 112	100%	No
$[6/7, 0]^{r_4 \rightarrow p_8}$	6/7	13	2	1	907, 192	97.22%	Yes
$[5/7, 0]^{r_4 \to p_8}$	5/7	17	3	1	855, 352	91.67%	Yes
$[4/7, 0]^{r_4 \rightarrow p_8}$	4/7	19	4	1	777, 592	83.33%	Yes
$[3/7, 0]^{r_4 \to p_8}$	3/7	19	5	1	673,912	72.22%	Yes
$[2/7, 0]^{r_4 \rightarrow p_8}$	2/7	17	6	1	544, 312	58.33%	Yes
$[1/7, 0]^{r_4 \to p_8}$	1/7	13	7	1	388, 792	41.47%	Yes

The meaning of the work:

- Analyze and control large-size WS³PR net models;
- Precisely locate and control the genuine structures contributing to non-liveness;
- Reduce control cost with simple and parameterized controllers.

Figure: MIP and LRS.

Figure: A schematic diagram of the iterative method.

Figure: An iterative control of a WS³PR net model.

Table: Details of the iterative control of the WS³PR net model.

MIM siphon obtained by MIP	r _i	vi	reachable states	dead states	live transitions
/	/ /	/	3, 334, 653	30	0
$\{p_5, p_7, p_{10}, p_{12}, p_{13}, p_{15}, p_{16}, p_{17}, p_{18}, p_{19}\}$	P19	<i>v</i> ₁	2,663,888	6	0
$\{p_6, p_7, p_{11}, p_{12}, p_{13}, p_{15}, p_{16}, p_{17}, p_{18}\}$	P15	v2	2, 613, 824	1	0
$\{p_6, p_7, p_{11}, p_{12}, p_{13}, p_{16}, p_{17}, p_{18}\}$	P17	<i>v</i> ₃	2, 500, 037	0	14

The meaning of the work:

- Avoid the enumeration of all WSDCs;
- Improve the computational efficiency;
- The number of iterations is bounded by that of resource places.

Figure: ILS in GS³PR.

(a)

(d)

Figure: GS³PR and ILS.

Figure: GS³PR and extended WSDCs.

Table: A Comparison between the control effects of the elementary siphons-based method (ES) and the intrinsically live structures-based one (ILS) in this work for the GS^3PR net model.

Description	$M_0(P_R)$	$M_0(V)$	Arcs and weights of moni- tors	$ R(N, M_0) $	Live
Original net: without control	$12p_9 + p_{10} + 8p_{11}$	/	/	234	No
ES by connecting output arcs	$12p_9 + p_{10} + 8p_{11}$	$11v_1 + 5v_2$	$W(v_1, t_1) = W(t_2, v_1) = 2,$	124	Yes
of monitors to source transi-			$W(v_1, t_5) = W(t_7, v_1) = 1,$		
tions			$W(v_2, t_1) = W(t_3, v_2) = 1,$		
			$W(v_2, t_5) = W(t_6, v_2) = 3$		
ES with a rearrangement of	$12p_9 + p_{10} + 8p_{11}$	$11v_1 + 5v_2$	$W(v_1, t_1) = W(t_2, v_1) = 2,$	168	Yes
output arcs of monitors			$W(v_1, t_6) = W(t_7, v_1) = 1,$		
			$W(v_2, t_2) = W(t_3, v_2) = 1,$		
			$W(v_2, t_5) = W(t_6, v_2) = 3$		
ILS by removing 1 token from	$11p_9 + p_{10} + 8p_{11}$	/	/	206	Yes
P9					
ILS by adding 1 token in p9	$13p_9 + p_{10} + 8p_{11}$	/	/	242	Yes

The meaning of the work:

- Extend the ILS-based method to a more general subclass of Petri nets;
- Extend the concepts of WSDCs and competition paths;
- Provide a deeper insight into structures of more general Petri nets.

Concluding Remarks

Figure: Main work.

Conclusion:

- Numerical relationship in generalized Petri nets;
- Intrinsically live structure ILS;
- Liveness and ratio-enforcing supervisor LRS.

Related publications:

[1] **Ding Liu**, ZhiWu Li, and MengChu Zhou, "Liveness of an extended S³PR," *Automatica*, vol. 46, no. 6, pp. 1008–1018, 2010.

[2] Ding Liu, ZhiWu Li, and MengChu Zhou, "Erratum to "Liveness of an extended S³PR [*Automatica* 46 (2010) 1008–1018]"," *Automatica*, vol. 48, no. 5, pp. 1003–1004, 2012.

[3] **Ding Liu**, ZhiWu Li, and MengChu Zhou, "Hybrid liveness-enforcing policy for generalized Petri net models of flexible manufacturing systems," *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, vol. 43, no. 1, pp. 85–97, 2013.

[4] **Ding Liu**, Kamel Barkaoui, and MengChu Zhou, "On intrinsically live structure of a class of generalized Petri nets modeling FMS," in *Proceedings of the 11th International Workshop on Discrete Event Systems*, pp. 187–192, Guadalajara, Mexico, Oct. 3-5, 2012.

[5] **Ding Liu**, YiFan Hou, Kamel Barkaoui, and MengChu Zhou, "Liveness and resource usage ratio-enforcing supervisor in a class of generalized Petri nets," submitted to the 10th International Conference on Control and Automation, Hangzhou, China, Jun. 12-14 2013.

Future work:

- Characteristics of ILS in state space;
- Optimal design of LRS;
- ILS in ROPN.

Work in progress:

Figure: A process-oriented Petri net model and a resource-oriented one.

Thanks for your attention!

Questions?

ding.liu@cnam.fr