
&

www.cea.fr

Mathieu Jan

CEA LIST

Real-Time Scheduling
for Time-Triggered

Mixed Criticality
systems

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 2 &

Outline of the talk

Real-Time scheduling context
The Time-Triggered execution model

Mixed Criticality systems: two main task models

Supporting MC within TT using the Vestal task model
Building scheduling tables: two solutions based on Linear Programming

Supporting MC within TT using the elastic task model
Maintaining task scheduling consistency: on-line decision algorithm

Conclusion and future work

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 3 &

Motivation for this work
The Time-Triggered (TT) paradigm

Used in industrial fields to build hard real-time systems subject to
certification constraints

Tasks are triggered by the advancement of time

Certification requirements: temporal behavior is mastered

Schedulability must be demonstrated in the worst-case situation
Difficulties to compute Worst-Case Execution Time (WCET)

Very low probability to simultaneously have the WCET for each task

Huge over-sizing of the CPU resources compared to what is needed

Economical constraints
Push for the use of these unused resources

A solution: Mixed-Criticality (MC) within TT

Unused processing capabilities: for the low-criticality tasks

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 4 &

Time-Triggered paradigm

The Time-Triggered (TT) paradigm (as introduced by Kopetz)

Temporal accuracy of real-time data/entity
<value, date>

Real-Time Image: is valid if it is an accurate

 representation in the time and value

 domains of a real-time entity

Firewalls used at predefined points to exchange RT images
Define the minimum validity time of a RT image

Several flavors
When I/O are performed differ as well as they assumed durations

Logical Execution Time (LET)

Bounded Execution Time (BET)

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 5 &

Our Time-Triggered execution model

A Bounded Execution Time flavor
Both computations and I/O can be performed whenever between the
predefined points

A task is a cyclic sequence of jobs with timing constraints

By default, the visibility date of a real-time image is equal to the job
deadline

Strict observation principle
A job works on real-time image whose visibility dates are inferior or equal
to the job release

Job

r d

Time

Time budget

… …
Job release

Job deadline

r

d

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 6 &

Circuit breaker closed

Default

Circuit breaker opened

Sensor

MC scheduling problem

Medium voltage protection relays
Safety-function: detect and isolate faults in the
electrical network

End-to-end temporal constraint between the
detection of power faults and asking the
tripping of circuit breakers

Easily demonstrated using the TT paradigm

Embed additional functionalities
Display information, optimizing the distribution of energy, etc.

Different levels of criticality: Mixed-Criticality (MC) systems
We are only interested in the use of two levels of criticality

Enable the design of MC systems where
Taken separately high and low-criticality tasks are schedule

But the union is not schedulable

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 7 &

The popular Vestal MC task model

Rationale
Higher the criticality level is, greater the estimated WCET value is

Periodic task model with
Two estimated Worst-Case Execution Time (WCET): Ci (LO), Ci (HI)

For the HI-criticality tasks: Ci (LO) < Ci (HI)

For the LO-criticality tasks: Ci (LO) = Ci (HI)

A criticality level χi : LO or HI

System states
Two execution modes: LO and HI

Switch to the HI-mode when a HI-criticality task exceeds its Ci (LO)

Only the schedulability of HI-criticality tasks ensured while in HI-mode

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 8 &

The elastic task model for MC

When using the Vestal task model, low-criticality tasks are
simply dropped in HI mode

Wasting processing power

For the low-criticality tasks, extend the periodic task model
Flavor of the elastic task model

Stretching factors: deadline is a flexible parameter

Set or range of possible (bounded) values specified off-line

Applied when a deadline is going to be missed, in order to postpone it

Importance level

Which low-criticality task should be stretched first

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 9 &

Common notations

We consider the use of these two tasks models within the
TT paradigm

A set of n independent synchronous, preemptible and
implicit-deadline periodic tasks: Γ = { τ1, τ2, … τn}

Job set of all jobs: JΓ

Temporal parameters (at least) of a task : τi = (Pi)

Total utilization noted U and m is the number of processors

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 10 &

Outline of the talk

Real-Time scheduling context
The Time-Triggered execution model

Mixed Criticality systems: two main task models

Supporting MC within TT using the Vestal task model
Building scheduling tables: two solutions based on Linear Programming

Supporting MC within TT using the elastic task model
Maintaining task scheduling consistency: on-line decision algorithm

Conclusion and future work

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 11 &

Definition of two schedules tables: SLO and SHI

Main issue: guarantee that a mode change cannot lead
to an unfeasible schedule for the HI-criticality tasks

Switching occur at specific points: where the HI-criticality tasks

can first exceed their Ci (LO) values

Remaining time is sufficient to schedule all HI-criticality tasks

Building SHI and SLO can not be made independently

Supporting Vestal MC task model within TT

Ci (HI)

Ci (LO)

SHI

SLO

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 12 &

Approach and related work
TT MC scheduling using Linear Programming techniques

Two proposed solutions: LPMC-HI and LPMC-Both

LPMC-HI: two separated but linked linear programs

First LP: guarantee the schedulability of HI-criticality tasks and
maximize the number of completed LO-criticality tasks

Second LP: guarantee the schedulability of LO-criticality tasks

Differs from [Baruah & Fohler, RTSS 1991]: HI-criticality tasks can be
delayed to complete a LO-criticality task

LPMC-Both: simultaneous building of SLO and SHI

Similar to [Theis et al., WMC 2013]

HI-criticality tasks are splitted into two sub-jobs: Ji
LO and Ji

Δ

Ji
Δ represents the additional WCET assumed when in the HI mode

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 13 &

Specific notations

Full temporal parameters of a task: τi = (χi, Pi, Ci(LO), Ci(HI))

Hyper-period H is divided in intervals

An interval being delimited by two job releases

Size of interval k: |Ik|, set of jobs in interval k: Jk

Wj,k: weight of job j on interval k (not an execution time but a
fraction of it)

Goal: compute wj,k
LO and wj,k

HI

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 14 &

A scheduling example

Task set running on a dual-core: m = 2 with H = 12

JLO

JHI

χi Pi Ci(LO) Ci(HI)

τ1 LO 2 1.5 1.5

τ2 HI 4 2 3

τ3 HI 3 1 2

UHI = 1.41

ULO = 1.58

U = 2.16

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 15 &

A scheduling example

Task set running on a dual-core: m = 2 with H = 12

JLO

JHI

χi Pi Ci(LO) Ci(HI)

τ1 LO 2 1.5 1.5

τ2 HI 4 2 3

τ3 HI 3 1 2

UHI = 1.41

ULO = 1.58

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 16 &

SHI : temporal schedulability constraint for all jobs

Processor maximum utilization:

No parallel jobs:

Different constraints for the completion
HI-criticality jobs

LO-criticality jobs

Objective: prepare the building of SLO in order to
maximize the schedulability of JLO

Decision variable Fj to account when a LO-criticality job has been
completely executed

Objective function: maximize

LPMC-HI: HI-criticality mode first

w
j ,k

HI

j J
k

m , k I

0 w
j ,k

HI
1, k I , j J

w
j ,k

HI

k E
j

I
k

C
i
(HI), j J

HI

F
j

j J
LO

LOik

Ek

HI

kj
JjLOCIw

j

),(
,

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 17 &

LPMC-HI: LO-criticality mode

Prepare the input for the computation of SLO

Execution time of HI-criticality task is reduced to its Ci (LO) values
When the HI-criticality task starts does not change

The weights of HI-criticality tasks are becoming constants:

SLO : temporal schedulability constraints

Processor maximum utilization:

Other constraints for the LO-criticality tasks only
No parallel jobs

Completion of jobs

No objective function

Any feasible solution generates a valid scheduling

Ikmww

kHIkLO
Jj

LO

kj

Jj

LO

kj
,

'

,,

'

,

LO

kj
w

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 18 &

LPMC-HI: computing SHI

Third and six instances of τ1 (P1 = 2 and C1(LO) = 1.5)

Cannot be completely executed in intervals I4 and I8

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 19 &

LPMC-HI: problem for computing SLO

HI-criticality tasks can be concentrated in some particular
intervals leading to an unfeasible schedule for SLO

Constraints cannot be met in interval I4

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 20 &

LPMC-HI: problem for computing SLO

HI-criticality tasks can be concentrated in some particular
intervals leading to an unfeasible schedule for SLO

Constraints cannot be met in interval I4

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 21 &

HI-criticality tasks can be concentrated in some particular
intervals leading to an unfeasible schedule for SLO

Constraints cannot be met in interval I4

LPMC-HI: problem for computing SLO

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 22 &

LPMC-Both: both criticality modes
Goal: improve the schedulability success ratio

A single linear program for both SHI and SLO

Split each HI-criticality job in two sub-jobs: Ji
LO and Ji

Δ

Temporal schedulability constraints for HI-criticality jobs to compute
wj,k

HI and for LO-criticality jobs to compute wj,k
LO

Precedence constraint to ensure correctness

 wj,k
Δ must be null till Ci (LO) is not exceeded

Prevent sub-jobs from a HI-criticality job to be present in the same
interval in SLO

In the first interval where Ci (LO) is exceeded, the weight left to Ji
Δ is

constrained so that a schedule where jobs cannot be executed in
parallel can be found:

No constraints in the other intervals

w
j ,k

w
j ,k

LO
I
k

w
j ,k

w
j ,k

LO
w

j ,k

HI

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 23 &

LPMC-Both: scheduling the example

Both SLO and SHI can be computed

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 24 &

Complexity analysis

Depends on the number of intervals

Complexity of LPMC-Both is higher than LPMC-HI

Total number of decision variables and constraints increased by:

nHI : number of HI-criticality tasks

Job splitting & precedence constraints

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 25 &

Outline of the talk

Real-Time scheduling context
The Time-Triggered execution model

Mixed Criticality systems: two main task models

Supporting MC within TT using the Vestal task model
Building scheduling tables: two solutions based on Linear Programming

Supporting MC within TT using the elastic task model
Maintaining task scheduling consistency: on-line decision algorithm

Conclusion and future work

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 26 &

Supporting the elastic task model within TT

Computation for each low-criticality task of the minimum
required stretching factor

Which worst-case temporal behavior will be used on-line

Assuming each task uses its estimated WCET

In the TT paradigm, visibility dates are predefined
Visibility date of data: deadline of the producer

A task may only use data whose visibility dates are equals or inferior to its
release date

To achieve determinism execution behavior

The use of stretching factors change the visibility date

Inconsistent with the statically defined triggering points

On-line decision algorithm to set stretching factor values

We assume a dynamic scheduler

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 27 &

Specific notations

Distinguish between high and low-criticality tasks
 high-criticality task () with a utilization noted

 low-criticality tasks () with a utilization noted

Temporal parameters of a task :

Low-criticality tasks have additional parameters
Importance level:

The higher the value, the higher is the importance of the task

Maximum stretching factor that can be applied:

Defines low utilization bound that can be reached

At run-time, the actual value is noted: and

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 28 &

Schedulability analysis

Constraints
On the utilization that can generate the low-criticality tasks due to the
presence of the high-criticality task

Bounds on the utilization value of a low-criticality task

Objective
Maximize the utilization of the resources, while stretching the less
important low-criticality tasks first

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 29 &

Two constraints to ensure
Change the visibility date of already

 produced data
But not yet visible, therefore no data

 inconsistency is possible

Maintain the initial offsets between the triggering points

Gather low-criticality tasks within groups
That must be kept temporally consistent between them

Use stretching factor and importance level parameters at the group
level:

On-line decision algorithm

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 30 &

Decision algorithm
Assumes that high-criticality tasks have an higher priority

When it is called?
At the beginning of an overloaded situation for the low-criticality tasks

When low-criticality tasks have already missed their deadline

Within an overloaded situation, where low-criticality tasks were preempted
for executing some high-criticality tasks

When it is called, we assume that the most important low-criticality task
is being executed

When a stretched low-criticality task finishes, the
stretching factor is reset to 1

On-line decision algorithm

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 31 &

On-line decision algorithm

Maintain
offsets

To ensure that visibility date will be
changed

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 32 &

Conclusion

Adding the support of MC within TT
TT: Determinism but low resource utilization in the average case

MC: efficient use of processing capabilities in the average case

Proposal for supporting the Vestal task model within the TT
paradigm

Two solutions: LPMC-HI and LPMC-Both

Proposal for supporting a flavor of the elastic task model
within the TT paradigm

Computation of the minimum required stretching factors

Decision algorithm to deal with stretching factors

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 33 &

Future work

Using the Vestal task model within the TT paradigm

Finish the implementation of the proposed solutions

Evaluation of their success ratio in scheduling MC job sets

Using the elastic task model within the TT paradigm

Further evaluations: overhead of the different possible strategies
for setting the stretching factors

Different approach for the execution part through the use of a
generalized form of the TT approach (eXternal-Triggered)

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 34 &

Backup slide

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 35 &

Complexity analysis
LPMC-HI

Total number of decision variables
Weights of jobs:

Decision variable :

Weights of jobs:

Total number of constraints
Number of variables + (First LP: processor max. capacity,
completion) + (2nd LP: processor max. capacity, completion
LO)

LPMC-Both

Total number of decision variables increased by
Job splitting & precedence constraint

Total number of constraint

For computing SLO :

For computing SHI :

Precedence constraint:

First LP

Second LP

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 36 &

Preliminary evaluations

Task set generator
Random task set, utilization computed using UUniFast-Discard algorithm

Range of possible periods: 10 to 100 ms

Each task is either a high or a low-criticality task until reaches 50%

3 tasks sets are generated with 20% of high-criticality tasks
From 50 – 70 tasks, with 5 – 14 high-criticality tasks

Initial utilization set to 125% and 150% off a 2 processors system

3 metrics used for the evaluation
Average stretching factor for all the low-criticality tasks:

Average stretching factor for the 25% most important low-criticality tasks:

Average stretching factor for the 75% less important low-criticality tasks:

Cliquez pour modifier le style du titre

 DACLE Division| November 2014 © CEA. All rights reserved | 37 &

Obtained stretching factors

Stretching factors
Are reduced for the most important low-criticality tasks

Much higher for the less important low-criticality tasks

Without the importance level parameter
Low-criticality must be stretched more when the importance level is used, but can
lead to almost unused stretching factors for important low-criticality tasks

Distribution of stretching
factors for two configurations

Config. A: random values for the
importance level

Config. B: 25% of the most
important tasks should have

