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Quantitative Verification

Qualitative Verification

Yes-No Question

Quantitative Verification

Question has an answer in a domain D

D continuous (time, probability) ⇒ dedicated models
timed, hybrid, stochastic . . .

D discrete ⇒ same models as qualitative setting

yes, but inefficient

We focus on discrete quantitative
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Motivating Example

Dining philosophers (ressource sharing model)

N philosophers, N forks

philo either thinking, or eating

2 forks needed to eat

Starvation = does a philo not eat forever?

In real life, starvation occurs in finite time

How long a philo thinks? (discrete time)

Bounds on ⇒ max/min thinking time (per philo, globally . . . )
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Motivating Example

Instrumentation: How to measure thinking (logical) time?

add a variable timerp

i f ( p h i l o p t h i n k s ) ++t i m e r p ;
i f ( p h i l o p e a t s ) t i m e r p = 0 ;

Qualitative Verification of the instrumented model.

Numerous Drawbacks

model modification = strong semantical risk

translate quantitative to qualitative: values known a priori
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Objective

Verification principle: model and property are independent
Quantitative measure should remain in the logic.

Proposal

Use a quantitative logic towards “discrete quantitative” verification

Linear Temporal Logic very popular

extend LTL with counting



LTL≤ [Kuperberg and Boom, 2012]

LTL≤ = LTL + a U operator that counts.
U≤ : counts ¬ until

1 1 3

find a n that dominates # of ¬
{possible n} ↑-closed

same n for all occurrences of U≤ in the formula

JφK≤ = inf{possible n}
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Example

G ( =⇒ (⊥ U≤ ))
counts the minimal distance between any and the next

. . .

1 0 2

(u, n) |= φ iff n dominates every U≤

here (u, n) |= φ iff n ≥ 2

JφK≤(u) = inf{possible n} = 2
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Negation and Duality

in LTL≤ and LTL>, cost operators cannot be negated

Remark

(u, n) |= a U≤ b ⇐⇒ (u, n) 6|= ¬a R> ¬b

Duality through negation

LTL≤
¬−−−⇀↽−−−
¬

LTL>

and push negations to leaves (Negative Normal Form)



Negation and Semantics

(u, n) |= φ ⇐⇒ (u, n) 6|= ¬φ

. . .

JφK≤(u)
= inf{n}

J¬φK>(u)
= sup{n}

(u, n) |= φ

(u, n) 6|= φ

semantically, ¬ is ±1
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And LTL?

Syntactically

LTL≤ LTL>LTL

Semantically (φ ∈ LTL)

u ` φ ⇐⇒ ∀n ∈ N.(u, n) |= φ

LTL≤ LTL LTL>

JφK≤(u) = 0 u ` φ JφK>(u) = +∞
JφK≤(u) = +∞ u 6` φ JφK>(u) = 0



LTL≤ and LTL> model-checking

LTL≤ and LTL> more expressive than LTL
New problems arise

(u, n) |= φ? for a given n ∈ N
∃u
∀u

is JφK≤ bounded over a given language L?

decidable when L regular [Bojańczyk and Colcombet, 2006]

actual values of bounds over a given set L

supLJφK≤ (LTL> seems appropriate)
infLJφK≤ (LTL≤ seems appropriate)
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Following the Automata Approach: LTL

M
ω-automaton

φ ∈ LTL
Aφ

ω-automaton

M×Aφ
Emptiness

check
Yes/No

(+ cter-example)



Following the Automata Approach: LTL>

M
ω-automaton

φ ∈ LTL>
Aφ

counting aut.

M×Aφ Quantitative
check

Value



Cost Register Automata
[Bojańczyk and Colcombet, 2006]

Transition-Based Generalized Büchi Automaton
+ finite set of counters
actions on counter: observe (o), increment (i), reset (r), ε

a/i, ε b/ε, i

a/i, ε b/ε, i

b/or, i

a/i, or

2 counters

1st one counts consecutive a’s

2nd one counts consecutive b’s

Val(ρ) = min{observed values}
= min # consecutive occurrences of the same letter
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Cost Register Automata Semantics

>-automata

Val>(ρ) = inf{observed counter values}
JAK>(u) = supρ acc. run on u Val>(ρ)

actions: i, or, r, ε

≤-automata

Val≤(ρ) = sup{observed counter values}
JAK≤(u) = infρ acc. run on u Val≤(ρ)

actions: io, r, ε
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From LTL> to >-automata

Translation idea [Kuperberg, 2012]

similar to LTL → Büchi translation

accepting conditions on the transitions

one counter for each R>

counts the occurrences of lhs of R>, as expected



Automaton for φ = G(a =⇒ ⊥U≤b)

JφK≤(u) = max distance between any a and the next b
>/ε

ab̄/or

>/ε

ab̄/ε

ab̄/i
b̄/or

b̄/ε

b̄/i

non-determinism

run with largest value
wins: useless transitions

safe to remove useless
transitions

guess the a for which the max is reached

guess: or just before b

wrong guesses yield runs with smaller values,
eliminated by sup in JAK>
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Compute the Upper Bound of a
>-Automata

Several sub-problems.

Boundedness

Is supJAK> finite?

Exact value

If finite, value of supJAK>?



Boundedness [Colcombet, 2009]

Property

supJAK> =∞ iff ∃ρ acc. run s.t.
every orγ is preceded by a cycle that increments γ and never or it
(γ-cycle).

i1 or1

i2
i1

or2

Upper bound

if bounded, supJAK> ≤ |QA|
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Back to LTL

Büchi Emptiness Check

u ∈ L(A) iff ∃ acc. run on u
possible early answer

Bound Computation

supJAK> = supall acc. runs ρVal>(ρ)
no early break is possible
but once a candidate n is found, all values < n are ruled out

Problem: remove runs of value < n in A
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Back to LTL

Problem

INPUT: φ ∈ LTL>, n ∈ N
OUTPUT: φ[n] ∈ LTL s.t. u ` φ[n] ⇐⇒ JφK>(u) ≥ n

for φ, ψ ∈ LTL

(φ R> ψ)[0] ≡ φ R ψ
(φ R> ψ)[n] ≡ (φ ∧ X (φ R> ψ)[n − 1]) R ψ

otherwise (φ ./ ψ)[n] = φ[n] ./ ψ[n]

φ = a R> b, n = 1

(a ∧ X (a R b)) R b

n is ”hardcoded” in φ[n]
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LTL to remove runs

Recall

Jφ1 ∧φ2K> = sup{n possible for φ1 AND φ2} = min(Jφ1K>, Jφ2K>)

u ` φ[n] ⇐⇒ JφK>(u) ≥ n

Jφ[n]K>(u) =

{
+∞ if JφK>(u) ≥ n

0 otherwise

Jφ ∧ φ[n]K>(u) =

{
JφK>(u) if JφK>(u) ≥ n

0 otherwise

φ[n] refines φ by forbidding words of value < n

If n ≤ supJφK> then supJφ ∧ φ[n]K> = supJφK>
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Refinement loop for upper bound

Repeat until Aφ has no more accepting runs

Find an acc. run ρ in Aφ
Let n = Val>(ρ)
Then n ≤ supJAK>
Update φ← φ ∧ φ[n] and restart

Requires supJAφ0K> <∞
supJAφ0K> = supρ acc. run Val>(ρ)
Guarantees that every found ρ has a finite value

easy to implement: formulae manipulations + Büchi EC

refinement: less and less behaviors



Refinement loop for upper bound

Repeat until Aφ has no more accepting runs

Find an acc. run ρ in Aφ
Let n = Val>(ρ)
Then n ≤ supJAK>
Update φ← φ ∧ φ[n] and restart

Requires supJAφ0K> <∞
supJAφ0K> = supρ acc. run Val>(ρ)
Guarantees that every found ρ has a finite value

easy to implement: formulae manipulations + Büchi EC
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Loop for boundedness + exact value

INPUT : φ0 and M

B ← |Aφ0 | × |M|
// i f f i n i t e , supJAφ0K> ≤ |Aφ0 ×M| ≤ B
φ← φ0

n← 0

whi le (L(Aφ ×M) 6= ∅) {
ρ← an a c c e p t i n g run i n Aφ ×M
n← Val>(ρ)

i f (n > B )
return unbounded

e l s e
φ← φ0 ∧ φ0[n]

}
return n



Our tool Spaction

CLTL
parser

CLTL
formulae

CLTL to
Automata

counter
automata

Boundedness
checks

CLTL
to LTL

LTL
formulae

TGBA

emptiness
check

model

Divine

SPOT
[LRDE, 2015]SPACTION

loop for bound computation



Conclusion

CLTL = nice extension of LTL

expressivity

counter automata = nice extension of ω-automata

separate the logics from the model

algorithm for bound computation

relies on ω-automata emptiness check

working tool (in progress)



What’s next?

examples and use cases

more abstractions and refinements

boundedness: smaller automata, fewer counters
exact value: smaller synchronized products

relaxed versions: supJA1K> ≤ n ∗ supJA2K>
variants and generalization
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