
From Human Knowledge
to Process Models

Jörg Desel
Katholische Universität Eichstätt-Ingolstadt

Paris, 15/02/08Based on an invited paper for UNISCOM 2008, April 2008, Klagenfurt

Outline

The general setting

Modularity

Synthesis

The complete picture

VIPtool

Audi project

Creating process models

Is the process description correct (valid)
w.r.t. realitiy or intended reality?

Is the process description correct
w.r.t. specified properties?

Are these properties correct (valid)?

Validation and Verification of a system
Validation: Did we build the right system?

Does the system fulfill the purpose for which is was intended?
Which aspects are missing? What is wrong?

Verification: Did we build the system right?

Evaluation: Is the system useful?

Automated or manual creation of a proof
showing that the system matches its specification.
Which specification is not satisfied? Counterexample?

Will it be accepted by the intended user?
Aspects that cannot be formulated in terms of formal specification.

Validation of a process model?
Validation: Did we build the right process model?
Does the process model fulfill the purpose for which is was intended?
Which aspects are missing? What is wrong?

What is the purpose of a
process model
in system development?

Model-based System Development

A Process in the Real World

real world:
environment / assumptions on the environment /

A Process Model in the Real World´s Model

Splitting the Process Model

The Reverse of Formalization?

The Reverse of Formalization?

Explanations

Scenarios: single runs
no alternatives, no IF-THEN-ELSE
instance level

Formal runs: labeled partial orders of events
why partially ordered?
- more natural for processes
- vertical composition (this talk)
- horizontal composition (Paris)

Process descriptions: Petri nets
processes and process modules

Synthesis: work done in Eichstätt

Modularity

x and y occur concurrently

x consists of a followed by b

y consists of c followed by d

sequential setting

possible runs: xy and yx

x = ab

y = cd

resulting runs: abcd, cdab

concurrent setting

The only possible run: x || y

x = ab

y = cd

resulting run: ab || cd

a

c

b

d

i o

x

y

as a Petri net

i

a

c

b

d

Definition of a process

A connected Petri net with two sets of transitions

Ti: input transitions (in the example { i })

To: output transitions (in the example { b, d })

safe processes

A process is safe if this net is 1-bounded

→ transitions of Ti and To occur alternatingly

→ no autoconcurrency

Difference to van der Aalst‘s workflow nets

Workflow nets start with input place and end with
output place
(and sometimes have a feedback transition)

Workflow nets start with empty initial marking
(only input place marked) and hence no memory

Sound workflow nets are safe but also live
(with feedback transition)

A process viewed as a main process

now similar to a workflow net

Refinement

i

a

c

b

d

Refinement of t in by

yields

Observation

We do not distinguish isomorphic processes

Proposition:
The order of refinement does not matter

Hence we can do all refinements in one step

But the refined process can have new refinements

Hence there is a refinement hierarchy

Partially ordered runs

A process

a

b

c

d

b’

A partially ordered run of the process

a

b

c

d

b’ b

No branching places, no circles,
vicinity of transitions is respected

1

1 1

2

2 2

3

3

4

4

More convenient view

A process

a

b

c

d

b’

A partially ordered run of the process

a

b

c

d

b’ b

Every occ. seq. of the run is an occ. seq. of the process

For each occ. seq. of the process there is an according run

process with
transitions T

set of
concurrent
runs over T

 process with
transitions T’

set of
concurrent

runs over T’

behavior

behavior

refine transitions of T
to subprocesses with

transitions T’

refine occurrences of T to
runs of subprocesses with

occurrences of T’

Main argument

For partially ordered runs, this diagram commutes

a

b

c

d

b’

a

b

c

d

b’ b

b1

b2

b3

b4 c1

c2

c3

c4

b4 c1

c2

c3

c4
a d

b’

b1

b2

b4 b1

b3

b4

c2

c3

c4c1

synthesis / process mining

Generate a Petri net from a description of its behavior
(state space, language, partial orders, …)

… such that the behavior of the generated net is
- precisely the initial behavior
- little more than the initial behavior

… such that generated Petri net is small / easy to understand

Theory for state spaces developed by Ehrenfeucht / Rozenberg
Main player in synthesis theory: Phillippe Darondeau

Synthesis from partial languages:
Lorenz / Mauser / Bergenthum / Desel

Synthesis from runs

a b c

ebd

Result obtained by folding

Synthesis from runs

a b c

ebd

c
b

d

a

e

Result obtained by folding

Problem: this process has additional runs, e.g.

Synthesis from runs

a b e

c
b

d

a

e

Result obtained by folding
This is either intended or runs have to be specified
more precisely

Synthesis from runs

a b c

ebd

c
b

d

a

e

Process construction using synthesis

1. Identify start conditions, start actions and end actions
of the process to be defined

2. Let relevant people define runs of the process on an abstract level

3. Agree on the abstract actions that occur in these runs

4. Synthesize a process from the runs

5. Validate this process by construction of runs

6. If actions that have to be refined then

Find experts that can provide information (runs) for these actions
and continue with 3

7. Otherwise construct the flat process by repeated refinement of all
actions for further analysis

Steps 2-4 described in detail in:
Bergenthum, Desel, Mauser: Synthesis of Petri Nets for Business Process Design,
Modellierung 2008, Berlin, 12.-14.March

stepwise validation of processes and properties

process 1

Simulation

process 1
runs Filter

property 1

property 1
behavior

process
behavior

synthesis

process 2 satsifies property 1
property 2 is validated.

process 2

simulation

process 2
runs filter

property 2

Property 2
behavior

process 1 property 1

implementation

stepwise validation of processes and properties

process n satsifies properties 1, … , n-1

The final process satisfies all properties

final
process

process n property n

implementation

This approach does only work as long as
the properties restrict behavior.

stepwise validation of processes and properties

VIPtool

Constructs and visualizes partially ordered runs

Allows to define properties graphically (fact transitions etc)

Checks properties on runs

Synthesizes nets from partially ordered runs
(various algorithms)

Will support the entire procedure described before.

VipTool

Simulation =

Generation
of runs

control of
parameters

VipTool

A generated and visualized run

VipTool

Analysis of runs

VipTool

The AUDI project
Audi improves algorithms
for refuel identification and
updates of the fuel /
remaining milige indication

The intended algorithms
are given in an informal
way, in form of natural-
language scenarios.

1. Formalize / validate the scenarios and requirements

2. Synthesize a model from these formalized specifications

3. Extract test cases from this model

4. Apply the model as a reference object for the int. circuit

How correct
are signals
from petrol

gauge?

Ignition is still on.
Was petrol used
(e.g. by auxilliary

heating)?

Did someone
refuel?

How much?

Did refueling really
happen, or is the
car on an aslope

road so that it
seems that petrol
has increased?

How much fuel is in the tank?

A complete refuel identification requires two gaging rounds.
At the end of the second round the assumed petrol level is
updated, provided refuel was identified.

For refuel identification in state “ignition off, gaging round 1
starts 6 seconds after ignition was turned off, and it takes 4
seconds. Gaging round 2 happens when ignition is turned on
again (0.5 seconds)

If there is not sufficient time to perform gaging round 1 while
ignition is off, no refuel identification will be performed. The
result of gaging round 1 survives immediate on- and off-turning
of the ignition which does not suffice for gaging round 2.

Requirements

6

4

2

x<Su

Ignition off Ignition on

4s

x>So

16

3

17

x>So

Sensor value

10

12

13

1

11 14

15

ADC-value :ok

ADC-value:
too small

ADC-value:
too large

ok

Sensor shorted

Sensor
broken

20s

20s

x<Su

Sensor OK

break

Short cuircuit

x,0

Su≤x≤So

Su≤x≤So

x,0

x,max

x,max

xa,xn

x

x

x

7

520s

20s

9

8
x

Overwrite arc

Read arc

Synchronisation arc

extensions

15
x,y

continuous
place

replace value x by y

transition
generating data

1

16 9
transition 9
synchronizes with
transition 16
(if it is enabled)

transition 1 can
only fire if the place
is marked, without
consuming the
token

uncontrollable
transition

6

4

2

x<Su

Ignition off Ignition on

4s

x>So

16

3

17

x>So

Sensor value

10

12

13

1

11 14

15

ADC-value :ok

ADC-value:
too small

ADC-value:
too large

ok

Sensor shorted

Sensor
broken

20s

20s

x<Su

Sensor OK

break

Short cuircuit

x,0

Su≤x≤So

Su≤x≤So

x,0

x,max

x,max

xa,xn

x

x

x

7

520s

20s

9

8
x

physical reality control

phys.
reality

6

4

2

x<Su

Ignition off Ignition on

4s

x>So

16

3

17

x>So

Sensor value

10

12

13

1

11 14

15

ADC-value :ok

ADC-value:
too small

ADC-value:
too large

ok

Sensor shorted

Sensor
broken

20s

20s

x<Su

Sensor OK

break

Short cuircuit

x,0

Su≤x≤So

Su≤x≤So

x,0

x,max

x,max

xa,xn

x

x

x

7

520s

20s

9

8
x

Sensor value

ADC-value:ok

sensor:ok

10

sensor shorted

x<Su

ADC-value: too small

4ok
Short circuit

Ignition on

11

1

Su≤x≤So

2

x 0

0 x

20s 4s

x 0 x

sensor:ok

ADC-value:ok

ok

sensor value

ADC-value:ok

sensor: OK

x>So

ADC-value: too large

6ok
break

ignition on

15

ADC-value: too small

x max max

20s

sensor broken sensor shorted

x<Su

0

13

ignition off
17 16 9

x max 0

ignition on

ok

sensor value

ADC-value: OK

sensor: OK

ADC-value: too large

6ok

ignition on

1

Su≤x≤So

3

20s 4s

x

x>So

break

1 xmaxmax
x max x

ok

