KATHOLISCHE

UNIERSITAT Mathematisch-Geographische Fakultat

%s Fach Informatik

EICHSTATT
INGOLSTADT

From Human Knowledge
to Process Models

Jorg Desel
Katholische Universitat Eichstatt-Ingolstadt

Based on an invited paper for UNISCOM 2008, April 2008, Klagenfurt Paris, 15/02/08




Outline

The general setting
Modularity

Synthesis

The complete picture
VIPtool

Audi project



Creating process models

v _ O
@\/l/: =) ©-
—E O

|s the process description correct (valid)
w.r.t. realitiy or intended reality?

Is the process description correct
w.r.t. specified properties?

Are these properties correct (valid)?



Validation and Verification of a system

Validation: Did we build the right system?

Does the system fulfill the purpose for which is was intended?
Which aspects are missing? What is wrong?

Verification: Did we build the system right?

Automated or manual creation of a proof
showing that the system matches its specification.
Which specification is not satisfied? Counterexample?

Evaluation: Is the system useful?

Will it be accepted by the intended user?
Aspects that cannot be formulated in terms of formal specificatior



Validation of a process model?

Validation: Did we build the right process model?

Does the process model fulfill the purpose for which is was intended
Which aspects are missing? What is wrong?

What is the purpose of a
process model
in system development?



Model-based System Development

Model-based system development >

analysis
real and design > process system
world model

abstracts from abstracts from
irrelevant details implementation details




A Process in the Real World

real
world

process model
require- - of the
ments process

process
Imple-
mentation

real world:
environment / assumptions on the environment /

\/—\



A Process Model in the Real World’'s Model

model of the real
real world world
rocess
process model pimple
require- of the mentation
ments process \_/-\




Splitting the Process Model

formalizat/i§n/ /\

real model of the real
world real world world
process require- . process <
require- ments dsepselgn —»  Imple-
ments spec. ' mentation
u ~

formalization specification specification



The Reverse of Formalization?

validation/

model of the

real

real world world
require- . process <
ments design —»  Imple-
spec. .
Spec. mentation

— ’

validation verification verification



The Reverse of Formalization?

require-
» ments
spec.

design
spec.




ﬁ > formal

cenarios
runs \
pProcess
/ description

formal

propertie properties




formalization-/validation

ahlh

'scenarios >

bropertie

A

formal

process
description

formal
properties

formalization /[ validation




specification / verification

/ﬂ I
< > formal

cenarios
runs \
process
/ description

formal
properties

bropertie

specification / verification



modular
approach

formal
runs

synthesis

\

process
description




Explanations

Scenarios: single runs

no alternatives, no IF-THEN-ELSE
Instance level

Formal runs: labeled partial orders of events
why partially ordered?
- more natural for processes
- vertical composition (this talk)
- horizontal composition (Paris)

Process descriptions: Petri nets
processes and process modules

Synthesis: work done in Eichstatt



Modularity

X and y occur concurrently

/ x consists of a followed by b
&Ry\/ 7 ’
O /9 y consists of c followed by d



sequential setting

possible runs: xy and yx

ﬁ\ X =ab
<§W{4@ y =cd

resulting runs: abcd, cdab



concurrent setting

The only possible run: x || y

#\ X =ab
<§W{4@ y =cd

resulting run: ab || cd



as a Petri net

O
“Of

O}
O

5 &




Definition of a process

O

—>
—>
—>
—>O—> d >
—

A connected Petri net with two sets of transitions
T input transitions (in the example {i})

T,: output transitions (in the example { b, d } )



safe processes

A process is safe if this net is 1-bounded
— transitions of T, and T, occur alternatingly

— NO autoconcurrency



Difference to van der Aalst‘s workflow nets

Workflow nets start with input place and end with
output place
(and sometimes have a feedback transition)

Workflow nets start with empty initial marking
(only input place marked) and hence no memory

Sound workflow nets are safe but also live
(with feedback transition)



A process viewed as a main process

®-

now Similar to a workflow net



Refinement

Refinement of t in




Observation

We do not distinguish isomorphic processes

Proposition:
The order of refinement does not matter

Hence we can do all refinements in one step
But the refined process can have new refinements

Hence there is a refinement hierarchy



Partially ordered runs

A process

-

IXON

A partially ordered run of the process

-

b

foRt

O -

@ L

b

0,

()

No branching places, no circles,
vicinity of transitions is respected



More convenient view

A process

(o)

O

O -

10

A partially ordered run of the process

b

O &

O-

(o) =

RO

CHac

O

Every occ. seq. of the run is an occ. seq. of the process

For each occ. seq. of the process there is an according run



Main argument

For partially ordered runs, this diagram commutes

: . set of
process with behavior
. » concurrent
transitions T
runs over T
ofine transitions of T refine occurrences of T tc
) subprocesses with runs of subprocesses witt
transitions T’ occurrences of T’
v \
set of

process with behavior

. ) » concurrent
transitions T

runs over T’




O 20,
R el

O 5 -0]




synthesis / process mining

Generate a Petri net from a description of its behavior
(state space, language, partial orders, ...)

... such that the behavior of the generated net is
- precisely the initial behavior
- little more than the initial behavior

... such that generated Petri net is small / easy to understand

Theory for state spaces developed by Ehrenfeucht / Rozenber
Main player in synthesis theory: Phillippe Darondeau

Synthesis from partial languages:
Lorenz / Mauser / Bergenthum / Desel



Synthesis from runs

? 9

-O-
-O-

-O-
-O-

_.O
_.O




Synthesis from runs

Result obtained by folding

O
O~

@ O-B-0 0

-O-
-O-

O O

\é %¢




Synthesis from runs

Result obtained by folding

Problem: this process has additional runs, e.g.

O-faHO-3HO-fHO

@ O-B-0 0

5




Synthesis from runs

Result obtained by folding

This is either intended or runs have to be specified

more precisely/O\
O

? T
O O




Process construction using synthesis

o oA W N

. Identify start conditions, start actions and end actions

of the process to be defined

Let relevant people define runs of the process on an abstract level

. Agree on the abstract actions that occur in these runs
. Synthesize a process from the runs

. Validate this process by construction of runs

If actions that have to be refined then

Find experts that can provide information (runs) for these actions
and continue with 3

. Otherwise construct the flat process by repeated refinement of all

actions for further analysis

Steps 2-4 described in detail in:
Bergenthum, Desel, Mauser: Synthesis of Petri Nets for Business Process Design,
Modellierung 2008, Berlin, 12.-14.March



stepwise validation of processes and properties

process
behavior

synthesis
@ property 1
Simulation

A 4
Filter »( Property 1
behavior




stepwise validation of processes and properties

property 1

j0
|}

implementation

property 2

)
0

process 2 satsifies property 1
simulation property 2 is validated.

\ 4
filter >

Property 2
behavior

b



stepwise validation of processes and properties

property n

implementation
final
process

This approach does only work as long as
the properties restrict behavior.

process n satsifies properties 1, ... , n-1

The final process satisfies all properties



VIPtool

Constructs and visualizes partially ordered runs
Allows to define properties graphically (fact transitions etc)
Checks properties on runs

Synthesizes nets from partially ordered runs
(various algorithms)

Will support the entire procedure described before.



¥IPtool Petni Het Editor - C:/Programme/¥ipDevel/Editor/Metz/coffee_target_net

ﬁpTOOI Eile

Simulation =

Generation
of runs

[

Target

E Edit Check Help
| Yy 5
o] In] =3 = 1= O[O B[] & [#]=] |&]&]|& x?
3
insert | p—
1=m=
warm ready counter
| =n=
1=n, ,
!
Irl w0 g1
brew dispense reset
f reject
i
e 1=m=
accept
1=m=
- 1=m= - 1=n= |
—_
cold accepted P inserted
. -
P 47
-
-
-
-
-

Frad: Di... | [] Drucker | L KGR-102 | Miu:ru:usu:uft...l EEQ viparch.... | o6 *Puthon .. | & wiptoolp... ”'?,é ¥IPtoo.



¥IPtool Petni Het Editor - C:/Programme/¥ipDevel/Editor/Metz/coffee_target_net

leTOOI File Edit Check . ﬂ%

ololE@lel=] oarAmE=] & [£]-] [«|ala

insert

control of

parameters warm ready
(=] -

1=m=
counter

Simulation of net C: /Programme M ipD evel /E ditordM ete/coffee_target. net

® Processes: ¢ Mo limit ¢ Limit to: |

brew

Process length: © Maolimit ¢ Limit ta |

External events: ( Disabled & Enahled

Query evaluatior ™ Disabled ¢ Enabled
. Cutoff events: (¢ [Digabled ¢ Enabled
Termination: [ CQuery match [ Deadlock

User interaction:  Automatic € Dialog

i |

|
Fud Di...| iEucker | | ﬁ Simulate @ Processes... e Save @ Help * Close




VipTool

A generated and visualized run

Process 1 of C:/Programme M ipDevel/E ditor/Hetz/coffee_target_net

IEiIe Edit HNavigate Business Help
o[D|||&[B]| [Be] 3 ] [#] [ala]a [\
Tamel
.—h@ z 7 eperce ’®-> 12
-)'AEITHOLTJ \ cld(T)

10

vEmET)
rEzel === 1]
fotnlo fotmie
Ireerl accEp | Ireerl
a1 : SonE i) counien) () 5 a1 ﬁ Ireeredii) aceep ed ,@
accep| Ireserl @ Esel spErceE
\@_} el

I ed(1) Ed(1)
4 3 N = 13 —»@ 15
resel hreEw
counenD Ireseried(1) accep ed =) o conkeni) counenD @ 1B @
=pere breEw

counenm oldiz) wamic

5
5

1

warmiCy

O]
\
3

Ll p 1]

Pruce&n:l 1o0f80 Conditions: IE Events: m Termination: |External event Queries: | 10f37 Scale: |100%




Business

Il Go

=]

accepked

/

counenT) \
Ireerl

=]

brew

S
S0

ViPtool

Process: | 1o0f80 Conditions: IE Events: m Termination: Iﬁ

Processes:

Events:

Conditions:

Enabled:

Query answers:

Time:

& Close

a0
=S
| 360
—
g7
| 00:22.42



The AUDI project

Audi improves algorithms
for refuel identification and
updates of the fuel /
remaining milige indication

The intended algorithms
are given in an informal
way, in form of natural-

language scenarios.

1. Formalize / validate the scenarios and requirements

2. Synthesize a model from these formalized specifications




How much fuel is in the tank?

Did someone
refuel?

How correct
are signals

How much? from petrol

Did refueling really
happen, or is the
car on an aslope

road so that it
seems that petrol
has increased?

Ignition is still on.
Was petrol used
(e.g. by auxilliary
heating)?



Requirements

A complete refuel identification requires two gaging rounds.
At the end of the second round the assumed petrol level is
updated, provided refuel was identified.

For refuel identification in state “ignition off, gaging round 1
starts 6 seconds after ignition was turned off, and it takes 4
seconds. Gaging round 2 happens when ignition is turned on
again (0.5 seconds)

If there is not sufficient time to perform gaging round 1 while
ignition is off, no refuel identification will be performed. The
result of gaging round 1 survives immediate on- and off-turning
of the ignition which does not suffice for gaging round 2.



ADC-value :ok
Sensor OK ;/\“.V v h
A Y 3 P
x<Su I
A
X
A 4 A 4
x>So — Susx<So v Shorit cuirciit
X ADC-value: /
broken too small A
A 4
4 A 4
Su<x<So
— x>So » 5
A 20s
X A A
A 4
Xx<Su ¢ J/
break

too large

J/q'
Sensor shorted >
ADc-value:\T/

x,0

A 4
~
A

20s

16

Ignition off 17 Ignition on




extensions

continuous
place

transition
generating data

X,y
Overwrite arc 15 .‘,Q replace value x by y

A
v

transition 9

—/—  Synchronisation arc 16— 9 synchronizes with

transition 16
(if it is enabled)

D E— Read arc 1 ‘—’O

transition 1 can
only fire if the place
is marked, without
consuming the
token

uncontrollable
transition




nysical reality

Sensor OK

broken

11

Sensor shorted

x,0

control I
2 >
ok
A
4s )
ADC-value :ok ( WA
;/:ﬁ v i
A Y 3 P
x<Su
- t
A 4 A 4
x>So — Susx<So v Shorit cuirciit
A ’)OS [ 4 L/\ » 8
" L Lad Ll
ADC-value: /
too small A A
y
- 4 A 4
Su<x<So
— x>So » 5
A 20s
A A
A 4
Xx<Su ¢ J/ L
break 4
ADC-value:
too large
> 7 |
20s
16
o
Ignition off 17 Ignition on p h yS
| |

realitv



ADC-value :ok
Sensor OK ;/\“.V v h
A Y 3 P
x<Su I
A
X
A 4 A 4
x>So — Susx<So v Shorit cuirciit
X ADC-value: /
broken too small A
A 4
4 A 4
Su<x<So
— x>So » 5
A 20s
X A A
A 4
Xx<Su ¢ J/
break

too large

J/q'
Sensor shorted >
ADc-value:\T/

x,0

A 4
~
A

20s

16

Ignition off 17 Ignition on




sensor shorted
sensor:ok ‘ sensor:ok

_X,

I ADC-value:ok

I ADC-value: too small

Su<x<So

A 4

Xx<Su

>
O
Q
<
]
c
o
o
=
v

4s

20s ok

—0

Short circuit

o
>
\ 4
N
4
N

Ignition on é



sensor broken

sensor shorted

max max 0

ADC-value: too lar

A 4

x>So

20s

A 4
(o]

x<Su

break

ignition on é

ADC-value: too small

ignition off

ok

16

O

ignition on



sensor: OK O

(O

A 4

1

sensorvalue 1 L»

;,

I ADC-value: too large I

A 4

x>So

ADC-value: OKO

20s

Su<x<So

break

(O

A 4

4s

ok

ignition on é



¥IPtool Petri Met Editor - C:/Programme f¥ipDevel/Editor/Mets/beispiel.nces
File Edit Check TokenFlow Help

lo[D [ (S ] A N (2] [#]-

an
0274 292
- (o)
ozadq T2ZE0 TZ255 291
1
aus
Strom
‘L

Schalter

Places: I_B Transitions: m Edges: ,E Scale: |100% Modified: =
Moduls: |_3 Conditionsignals: m Eventsignals: m Eventinputs: l_fl Eventoutputs: l_fl Conditioninputs: l_fl Conditionoutputs: I_D

i Start| i Eingabeaiforderung - py... |[7¢ VIPtool Petsi Net Edit__ N 1521




