
Reasoning about sequences of memory states

Stéphane Demri

LSV, ENS Cachan, CNRS, INRIA Saclay

Joint work with Rémi Brochenin and Etienne Lozes

November 14th, 2008 — Séminaire MeFoSyLoMa

Pointer programs

◮ Pointer: reference to a memory cell
(non fixed memory address).

◮ Dynamic memory allocation/deallocation.

◮ Examples of instructions:
◮ x := y : assign the value y to the variable x,
◮ x := y→ l : read the l-field of the cell pointed to by y into x,
◮ y→ l := x: write x to the l-field of the cell pointed to by y,
◮ free x: deallocate the cell pointer to by x ,
◮ x := malloc(i): allocate i memory cells and assign its address

to x.
◮ Simple safety properties of pointer programs are undecidable

(“there is no null dereference”).

2

Memory states

3

Memory states

◮ Set of variables Var.

◮ Set of labels Lab.

◮ Set of values Val = N ⊎ {nil}.

◮ Set of stores: S
def
≡ Var→ Val.

◮ Set of heaps:

H
def
≡ N ⇀fin (Lab⇀fin+ Val).

◮ Memory state: (s, h).

4

Disjoint heaps

◮ h1 and h2 are disjoint whenever dom(h1) ∩ dom(h2) = ∅.
Notation: h1 ⊥ h2.

◮ Disjointness does not concern records.

◮ Disjoint union h1 ∗ h2 whenever h1 ⊥ h2.

5

Disjoint heaps

◮ h1 and h2 are disjoint whenever dom(h1) ∩ dom(h2) = ∅.
Notation: h1 ⊥ h2.

◮ Disjointness does not concern records.

◮ Disjoint union h1 ∗ h2 whenever h1 ⊥ h2.

◮ Disjoint heaps (with a unique label):

= ∗

6

Analysis of pointer programs

◮ Memory leak: a memory cell can no longer be reached.

◮ Null-pointer dereferencing.

◮ Alias analysis: checking whether memory cells are shared.

◮ Shape analysis: checking the structure of the heap.

◮ Functional properties: compare input and output heaps, data
properties.

⇒ Verification of program with pointers requires fine-tuned

specification languages to speak about memory states and their
evolution.

7

Reasoning about pointer programs

◮ Separation logic [Reynolds, LICS 02].

◮ Pointer assertion logic (PAL) [Jensen et al. 97].
Monadic 2nd logic whose the universe of discourse contains
records, pointers and booleans (non-elementary complexity)

◮ TVLA [Lev-Ami & Sagiv, SAS 00]: abstract interpretation
technique with Kleene’s logic (op. semantics in FOL + TC)

◮ Alias logic [Bozga & Iosif & Lakhnech, SAS 04].

◮ Logic of Reachable Patterns [Yorsh et al., FOSSACS 06].

◮ Evolution Logic [Yahav et al., ESOP 03]: to specify temporal
properties of programs with dynamically evolving heaps.

8

Model checking

◮ Navigation Temporal Logic
[Distefano & Katoen & Rensink, FSTTCS 04].

◮ Bounded model-checking
[Charatonik & Georgieva & Maier, CSL 05].

Decidability for a fragment of FOL with Datalog programs.

◮ Model-checking pointer systems
[Bardin & Finkel & Nowak, AVIS 04; Bardin, PhD 05].

◮ Regular model-checking [Bouajjani et al., TACAS 05].

◮ Translation into counter automata
[Bouajjani et al, CAV 06; Sangnier, PhD 08].

9

Our motivations

◮ To design temporal languages to specify the behaviors of
pointer programs.

◮ To combine an assertion language from separation logic with
linear-time/branching-time temporal logics.

◮ To evaluate the borders for decidability.

◮ To admit effective procedure with “reasonable” computational
complexity for precise analysis.

◮ Automata-based proof technique with symbolic memory
states.

10

Separation logic

◮ Introduced by Reynolds, Pym and O’Hearn.

◮ Reasoning about the heap with a strong form of locality
built-in.

◮ A ∗ B is true whenever the heap can be divided into two
disjoint parts, one satisfies A, the other one B.

◮ A−∗B is true whenever A is true for a (fresh) disjoint heap, B
is true for the combined heap.

◮ Hoare-style proof system for local reasoning about pointer
programs, e.g. frame rule:

{A} PROG {B}

{A ∗ B′} PROG {B ∗ B′}
11

Hoare triples

◮ Hoare triple: {A} PROG {B}.

◮ Total correctness: if we start in a state where A holds true
and execute PROG, the program PROG will terminate in a state
satisfying B.

◮ Hoare logic uses Hoare triples to reason about program
correctness.

◮ Rule of constancy:

{A} PROG {B}

{A ∧ B′} PROG {B ∧ B′}

where no variable free in B′ is modified by PROG.

12

When separation logic enters into the play

◮ Unsoundness of the rule of constancy in separation logic:

{(∃z. x 7→ z)} [x] := 4 {x 7→ 4}

{(∃z. x 7→ z) ∧ y 7→ 3} [x] := 4 {x 7→ 4 ∧ y 7→ 3}

(when x = y)

◮ Reparation with frame rule:

{A} PROG {B}

{A ∗ B′} PROG {B ∗ B′}

where no variable free in B′ is modified by PROG.

13

Standard inference rules for mutation

◮ Local form (MUL)

{(∃z. x 7→ z)} [x] := y {x 7→ y}

◮ Global form (MUG)

{(∃z. x 7→ z) ∗ φ} [x] := y {x 7→ y ∗ A}

◮ Backward-reasoning form (MUBR)

{(∃z. x 7→ z) ∗ ((x 7→ y)−∗ A)} [x] := y {A}

14

Separation Logics (SL)

◮ Expressions
e ::= x | null

◮ Atomic formulae

π ::= e = e′ | x + i
l

→֒ e

◮ Standard e →֒ e′, e” can be encoded with e
1
→֒ e′ ∧ e

2
→֒ e”.

◮ i = 0 for no arithmetics on pointers.

◮ State formulae

A ::= emp | π | A ∧ B | ¬A | A ∗ B | A−∗B

15

Semantics
◮ (s, h) |=SL emp iff dom(h) = ∅.

◮ (s, h) |=SL e = e′ iff J e Ks = J e′ Ks , with J x Ks = s(x) and
J null Ks = nil .

◮ (s, h) |=SL x + i
l

→֒ e′ iff J x Ks ∈ N and J x K + i ∈ dom(h)
and h(s(x) + i)(l) = J e′ Ks .

◮ (s, h) |=SL A1 ∗ A2 iff ∃ h1, h2 such that h = h1 ∗ h2,
(s, h1) |=SL A1 and (s, h2) |=SL A2.

◮ (s, h) |=SL A1−∗A2 iff for all h′, if h ⊥ h′ and (s, h′) |=SL A1

then (s, h ∗ h′) |=SL A2.

◮ + clauses for Boolean operators.

16

Memory states with arithmetic and records

x+1
l

→֒y

y
l ′

→֒null

17

Memory states with arithmetic and records

x+1
l

→֒y h(s(x) + 1)(l) = s(y)

y
l ′

→֒null h(s(y))(l ′) = nil

18

Simple properties on memory states

◮ The memory heap has at least two cells (size ≥ 2):

¬emp ∗ ¬emp

◮ The memory heap has exactly one cell at address x (x
l
7→ e):

x
l

→֒ e ∧ ¬(size ≥ 2)

◮ The variable x is allocated in the heap (alloc(x)):

(x
l

→֒ null)−∗⊥

19

On the complexity of SL

◮ Model-checking, satisfiability and validity for SL are
pspace-complete problems.

◮ pspace-hardness is from
[Calcagno & Yang & O’Hearn, FSTTCS 01].

◮ pspace upper bound is obtained thanks to a “small memory
state property”.

◮ pspace upper bound of SL without arithmetics can be
obtained by translation into a “separation-free”version.
[Lozes, SPACE 04].

◮ SL + ∃ is undecidable [C. & Y. & O’H., FSTTCS 01].
even with a unique label [BDL’08].

20

Small store property

◮ Standard property: A is satisfiable iff there is a store s such
that (s, ∅) |=SL ¬(A−∗ ⊥).

◮ Refinement: A is satisfiable iff there is a store s such that
◮ (s, ∅) |=SL ¬(A−∗ ⊥),
◮ for each variable x ∈ Y , s(x) ≤ (|Y |+ 1)×max ǫ,

where
◮ Y is the set of variables occuring in A,
◮ ǫ is the set of indices i such that x + i occurs in A for some

variable x.

21

Temporal Separation Logic

◮ To combine spatial properties and temporal properties
◮ What are the modes of combination?

See e.g. multidimensional logics in [Gabbay et al., Book 03].
◮ Which problems are decidable?

LTL with zero tests and incrementation is undecidable.
◮ How the memory states are updated?

constant heap, programs without destructive update, etc.

◮ To add recursion in SL.

◮ To extend the automata-based approach for model-checking?
[Vardi & Wolper, IC 94].

◮ LTL over concrete domains
See e.g., [Esparza, ICALP 94; Demri & D’Souza, IC 07].

22

LTL operators in a nutshell

Xφ φ

Xφ: next-time φ

φ1Uφ2,φ1 φ1 φ1 φ1 φ2

φ1Uφ2: φ1 until φ2

Fφ φ

Fφ: sometimes φ

23

About plain LTL

◮ Formulae: φ ::= p | ¬φ | φ ∧ ψ | φUψ | Xφ.

◮ Models: σ: N→ P(PROP) and σ, i |= p iff p ∈ σ(i).

◮ L(φ) = {σ ∈ (P(PROP))ω : σ, 0 |= φ}.

◮ φ Büchi automaton Aφ such that L(φ) = L(Aφ).
[Vardi & Wolper, IC 94].

◮ |Aφ| is in 2O(|φ|).

◮ Model-checking and satisfiability are pspace-complete.
[Sistla & Clarke, JACM 85].

24

The logic LTL
mem

◮ Syntax

e ::= x | null | Xe (expressions)

π ::= e = e ′ | e + i
l

→֒ e (atomic formulae)
A ::= π | A ∧ B | ¬A (classical fragment)

| A ∗ B | A−∗B | emp (spatial fragment)
φ ::= A | Xφ | φUφ′ | φ ∧ φ′ | ¬φ (temporal formulae)

◮ Examples

G (alloc(x) ⇒ F alloc(y))

GF(size ≥ 2) (Xx = x)U(y
l

→֒ z)

25

Semantics
Models: elements of (S ×H)ω of the form ρ = (si , hi)i≥0.

ρ, t |= e = e′ iff J e Kρ,t = J e′ Kρ,t with J Xe Kρ,t = J e Kρ,t+1

ρ, t |= e + i
l

→֒ e′ iff ht(J e Kρ,t + i) = J e′ Kρ,t

ρ, t |= A1 ∗ A2 iff ∃ h1, h2 s.t. ht = h1 ∗ h2,

ρ[ht ← h1], t |= A1,

and ρ[ht ← h2], t |= A2.

ρ, t |= A1−∗A2 iff ∀h′, if ht⊥h′ and ρ[ht ← h′], t |= A1

then ρ[ht ← h ∗ h′], t |= A2.

ρ, t |= Xφ iff ρ, t + 1 |= φ.

ρ, t |= φUφ′ iff ∃t ′ ≥ t such that ρ, t ′ |= φ′,

and ∀t ′′, t ≤ t ′′ < t ′, ρ, t ′′ |= φ.
26

Satisfiability problems

◮ Satisfiability problem SAT(Frag) with underlying fragment
Frag ⊆ SL.

◮ Problem SATct(Frag) with constant heap
→ temporal language allows us to explore the heap.

◮ Problem SAT
init

(Frag) with a fixed initial heap.

27

A class of programs manipulating pointers

◮ Set of instructions

instr ::= x := y | skip

| x := y→ l | x→ l := y

| x := cons(l1 : x1, .., lk : xk) | free x, l

| x := y[i] | x[i] := y

| x = malloc(i) | free x, i

◮ Programs are finite-state automata with transitions labelled
by instructions and equality tests.

◮ A program without destructive update admits runs with
constant heap.

28

Model-checking problems

◮ MC(Frag): given φ in LTLmem with state formulae built over
Frag and a program PROG of the associated fragment, is there
an infinite computation ρ of PROG such that ρ, 0 |= φ?

◮ MCct

init
(Frag): idem with fixed initial memory state and no

destructive update.

29

Fragments with decidable temporal reasoning

◮ SL fragments:
Classical fragment (CL)

A ::= e = e ′ | x + i
l

→֒ e

| A ∧ A | ¬A

Record fragment (RF)

A ::= e = e ′ | x
l

→֒ e

| A ∗ A | A−∗A | emp
| A ∧ A | ¬A

◮ Theorem: The satisfiability problems for LTLmem(CL) and
LTLmem(RF) are pspace-complete.

30

Bounding the syntactic resources

◮ Test formulae

e ::= 〈x, u〉 | null f ::= e + i

ψ ::= f
l

→֒ e | alloc(f) | e = e′ | size ≥ k

◮ u, i , k ∈ N,
◮ u encoded in unary since 〈x, u〉 ≈ Xu

x,
◮ x is a variable and l is a label.

◮ Measure µ restricts the test formulae

µ = (m, ǫ,w ,X ,Y) ∈ N× Pf (N)× N× Pf (Lab)× Pf (Var)

◮ Tµ : set of test formulae restricted to the resources from the
measure.

31

Symbolic models and abstraction

◮ Symbolic model: σ : N→ P(Tµ).

◮ Abstraction: ρ ∈ (S ×H)ω 7→ Absµ(ρ) ∈ P(Tµ)ω.

Absµ(ρ)(i)
def
= {A ∈ Tµ : ρ, i |= A}.

◮ See also resource graphs in [Galmiche & Mery, JLC’08].

◮ Symbolic satisfaction relation: σ, i |=µ φ defined by induction

on φ with the base case: σ, i |=µ A
def
⇔

|=SL (
∧

A′∈σ(i)

A′ ∧
∧

A′∈(Tµ\σ(i))

¬A′) ⇒ A

32

Checking satisfiability with symbolic models

◮ Lemma: φ in LTLmem(RF) is satisfiable iff there is a
symbolic model σ : N→ P(Tµφ

) such that
◮ σ symbolically satisfies φ (σ, 0 |=µφ

φ)
◮ there is a model ρ of LTLmem such that Absµ(ρ) = σ.

◮ For instance, {Xx = X2x, . . .}, {x 6= Xx, . . .} . . . has no
concrete models.

33

The generalized Büchi automaton A
µ
φ

◮ Q is the set of atoms of φ (sets of subformulae).
◮ I = {X ∈ Q : φ ∈ X}.
◮ Σ = P(Tµ).

◮ X
a
−→ Y iff

1. for every atomic formula A of X , |=SL Aa ⇒ A[Xu
x← 〈x, u〉].

2. for every Xφ′ ∈ cl(φ), Xφ′ ∈ X iff φ′ ∈ Y .

◮ Let {φ1Uφ
′
1, . . . , φnUφ

′
n} be the set of until formulae in cl(φ).

We pose F = {F1, . . . ,Fn} where
Fi = {X ∈ Q : φiUφ

′
i
6∈ X or φ′

i
∈ X} for i ∈ {1, . . . , n}.

◮ Lemma: Let φ in LTLmem(RF) and µ ≥ µφ. Then, L(Aµ
φ) is

the set of symbolic models satisfying φ.

34

The automaton A
µ
sat for consistency

◮ Σ = P(Tµ), Q = I = F = Σ,

◮ a
a′

−→ a′′ iff:

1. Aa,Aa′′ are satisfiable, and a = a′,
2. for every formula 〈x, u〉 = 〈x′, u′〉 ∈ Tµ with u, u′ ≥ 1,
〈x, u〉 = 〈x′, u′〉 ∈ a iff 〈x, u − 1〉 = 〈x′, u′ − 1〉 ∈ a′′.

◮ Lemma: Let φ in LTLmem(RF) and µ = µφ. Then L(Aµ
sat) is

the set of symbolic models being the abstraction of some
concrete model.

35

Other decidable satisfiability problems

◮ SATct

init
(Frag): satisfiability problem of the fragment Frag

with fixed initial memory state and constant heap models.

◮ Theorem:

◮ SATct

init
(RF) is pspace-complete.

Proof by reduction to SAT(RF) by internalizing the initial
memory state and the fact that the heap is constant.

◮ SATct

init
(CL) is pspace-complete.

Similar internalization.
◮ SATct

init(SL \ −∗) is pspace-complete.
Proof by reduction to SATct

init
(RF) in order to eliminate the

arithmetic expressions.

36

Other decidable problems

◮ MCct

init
(RF) is pspace-complete.

Proof by reduction into SATct

init
(RF).

◮ MCct

init
(SL) is pspace-complete.

Proof by reduction into LTL model-checking.

◮ Replacing X and U by a finite set of MSO definable preserves
the pspace upper bound.

37

Satisfiability problems

◮ Theorem: SAT?
?(SL) and SAT(SL \ −∗) are Σ1

1-complete.

◮ Proof by reducing the recurrence problem for ND Minsky
machines [Alur & Henzinger, JACM 94].

◮ Incrementation is encoded thanks to

(Xx →֒ y ∧ x + 1 →֒ y) ∧ ¬ (Xx →֒ y ∗ x + 1 →֒ y)

38

An undecidable model-checking problem

◮ List fragment LF: RF with a unique label.

◮ Theorem: MCct(LF) is Σ0
1-complete.

◮ Reduction from the halting problem for Minsky machines.

◮ Maximal value of counters:

z�
next
−→ �

next
−→ · · ·�

next
−→ �

next
−→ nil

◮ The length of the list starting at xi encodes the value of the
counter Ci .

◮ Preliminary verification to check that z points to a list.

◮ Decrementing Ci is simulated by xi := xi → next.

39

Summary of main complexity results

MC MCct MCct

init SAT SATct SATct

init

LF Σ1
1-c. Σ0

1-c. pspace-c. pspace-c. Σ0
1-c. pspace-c.

CL and RF Σ1
1-c. Σ0

1-c. pspace-c. pspace-c. Σ0
1-c. pspace-c.

SL\{−∗} Σ1
1-c. Σ0

1-c. pspace-c Σ1
1-c. Σ0

1-c. pspace-c
SL Σ1

1-c. Σ0
1-c. pspace-c Σ1

1-c. Σ1
1-c. Σ1

1-c.

40

Conclusion and perspectives

◮ Introduction of a logic mixing temporal operators and
assertions from separation logic.

◮ Characterization of the complexity of model-checking and
satisfiability problems for fragments and under different
hypotheses.

◮ Some open problems:
◮ Which classes of constraints on successive heaps restore

decidability?
◮ How to add recursion to separation logic while preserving

decidability?

41

Some bibliographical references

◮ Separation logic and verification
[Reynolds, LICS 02]

◮ Complexity results on separation logic
[Calcagno & O’Hearn & Yang, FSTTCS 01]

◮ Propositional separation logic expressiveness
[Lozes, SPACE 04]

◮ Tableaux and resource graphs for separation logic
[Galmiche & Mery, JLC 08]

◮ LTL over concrete domains
[Demri & D’Souza, IC 07; Gascon, PhD 07]

42

	Motivations
	Analysis of pointer programs
	Our goals

	Separation in a nutshell
	Hoare triples
	Temporal extension
	Definition

	Symbolic approach
	Symbolic models
	Automata

	Decidability results
	Satisfiability problems
	Model-checking problems

	Undecidability results
	Undecidable satisfiability problems
	Model-checking problems

	Concluding remarks
	Summary
	Conclusion
	Bibliographical references

