A modular coloured Petri net model
for complex event processing

Ariane Piel

Directrice de thèse : Christine Choppy (LIPN, U. Paris 13 & CNRS)
Encadrants: Romain Kervarc et Patrice Carle (Onera, DCPS – TCS)

MeFoSyLoMa, le 4 octobre 2013
Systematic resort to simulation in the aerospace industry.

Study of all the characteristics of complex systems before even considering of undertaking them.

Generation of gigantic quantities of data: necessity to have an analysis assistance tool.

ONERA has a recognised expertise in distributed simulation:

- work on intention recognition initiated in 1998,
Main goals

- **Aim**: activity recognition in the framework of complex problems.
 - informatics security
 - supervision of medical environments

- Necessity of simulations since experiments may not be undertaken (because of criticality and cost for aerospace systems)
 - make use of the important quantity of data produced by the simulation in which numerous systems interact,
 - possibly, react to the data.
High criticality of the system → need for strong guarantees.

Very dynamic and highly complex data flow, be it between the agents of the system or between several systems.

Aim: overseeing the consistency of the system in case of failure(s)
An example: consistency of an unmanned aircraft system in case of breakdown(s)

- High criticality of the system → need for strong guarantees.
- Very dynamic and highly complex data flow, be it between the agents of the system or between several systems.
- **Aim**: overseeing the consistency of the system in case of failure(s)
An example: consistency of an unmanned aircraft system in case of breakdown(s)

- High criticality of the system → need for strong guarantees.
- Very dynamic and highly complex data flow, be it between the agents of the system or between several systems.
- **Aim**: overseeing the consistency of the system in case of failure(s)
High criticality of the system \rightarrow need for strong guarantees.

Very dynamic and highly complex data flow, be it between the agents of the system or between several systems.

Aim: overseeing the consistency of the system in case of failure(s)

!! INCONSISTENT SITUATION !!
1 Chronicles: a behaviour detection formalism

2 Coloured Petri nets

3 A chronicle recognition model
Outline

1. Chronicles: a behaviour detection formalism
2. Coloured Petri nets
3. A chronicle recognition model
- a single event A
- a disjunction $C_1 \mid \mid C_2$: at least either C_1 or C_2.
- a conjunction $C_1 \& C_2$: both C_1 and C_2 in any order, possibly intertwined.
- a sequence $C_1 \cdot C_2$: C_1 followed by C_2.
- an absence $(C_1) – [C_2]$: C_1 without C_2 occurring during the recognition of C_1.
Let \mathcal{N} be a countable set of *single event names*. The set $X(\mathcal{N})$ of *chronicles* over \mathcal{N} is defined inductively by these inference rules:

- **Name Rule**: $A \in \mathcal{N} \Rightarrow A \in X(\mathcal{N})$ (name)

- **Disjunction Rule**: $C_1, C_2 \in X(\mathcal{N}) \Rightarrow C_1 \parallel C_2 \in X(\mathcal{N})$ (disjunction)

- **Conjunction Rule**: $C_1, C_2 \in X(\mathcal{N}) \Rightarrow C_1 \& C_2 \in X(\mathcal{N})$ (conjunction)

- **Sequence Rule**: $C_1, C_2 \in X(\mathcal{N}) \Rightarrow C_1 \cdot C_2 \in X(\mathcal{N})$ (sequence)

- **Absence Rule**: $C_1, C_2 \in X(\mathcal{N}) \Rightarrow (C_1) - [C_2] \in X(\mathcal{N})$ (absence)
The *recognition set of C over flow ϕ until instant d*, denoted $R_C(\varphi, d)$, is defined by induction as follows:

- If $C = A \in N$, then
 $$R_A(\varphi, d) = \{(e, t) : \exists i \; \varphi(i) = (e, t) \land e = a \land t \leq d\}$$

- $R_{C_1 || C_2}(\varphi, d) = \{\langle r, \bot \rangle : r \in R_{C_1}(\varphi, d)\} \cup \{\langle \bot, r \rangle : r \in R_{C_2}(\varphi, d)\}$

- $R_{C_1 \& C_2}(\varphi, d) = \{\langle r_1, r_2 \rangle : r_1 \in R_{C_1}(\varphi, d) \land r_2 \in R_{C_2}(\varphi, d)\}$

- $R_{C_1 * C_2}(\varphi, d) = \{\langle r_1, r_2 \rangle : r_1 \in R_{C_1}(\varphi, D) \land r_2 \in R_{C_2}(\varphi, d) \land T_{\max}(r_1) < T_{\min}(r_2)\}$

- $R_{(C_1) - [C_2]}(\varphi, d) = \{r_1 : r_1 \in R_{C_1}(\varphi, d) \land \forall r_2 \in R_{C_2}(\varphi, d) \land (T_{\min}(r_1) > T_{\min}(r_2) \lor T_{\max}(r_1) \leq T_{\max}(r_2))\}$
Let a, b, d and e be events of \mathcal{E} such that $\nu(a) = A$, $\nu(b) = B$, $\nu(d) = D$ et $\nu(e) = E$.

Consider chronicle $C = (A&B) - [D]$ and flow $\varphi = (a, e, b, a, d, b, a, a)$ where $\mathcal{O} \varphi = [1, 6]$.

$$R_C(\varphi, 8) = \{\langle 1, 3 \rangle, \langle 4, 3 \rangle, \langle 7, 6 \rangle, \langle 8, 6 \rangle\}$$
A coloured Petri net recognition model built by induction: for any given chronicle C, a Petri net $N(C)$ computing the recognitions of C

- modularity constraint
- determinism, in the sense that the nets always have to provide, given an event flow, the same recognitions
- maintaining concurrency
1 Chronicles : a behaviour detection formalism

2 Coloured Petri nets

3 A chronicle recognition model
Why coloured Petri nets?

- a concurrent framework
- a modular framework
 - to map the structure of the language
- a tool to visualise executions and check properties
Coloured Petri nets

CPN definition

A non-hierarchical CPN is a tuple \((P, T, A, \mathcal{B}, V, C, G, EX, I)\) :

1. \(P\) is a finite set of places.
2. \(T\) is a finite set of transitions such that \(P \cap T = \emptyset\).
3. \(A \subseteq P \times T \cup T \times P\) is a set of directed arcs.
4. \(\mathcal{B}\) is a finite set of non empty colour sets (types).
5. \(V\) is a finite set of typed variables such that : \(\forall v \in V\) \(Type[v] \in \mathcal{B}\).
6. \(C : P \rightarrow \mathcal{B}\) is a colour set function assigning a colour set to places.
7. \(G : T \rightarrow \text{Expr}_{\Sigma(V)}\) is a guard function.
8. \(EX : A \rightarrow \text{Expr}_{\Sigma(V)}\) is an arc expression function.
9. \(I : A \rightarrow \text{Expr}_{\Sigma(V)}\) is an initialisation function.

A non-hierarchical CPN is a tuple \((P, T, A, B, V, C, G, EX, I, B)\):

1. \(P\) is a finite set of places.
2. \(T\) is a finite set of transitions such that \(P \cap T = \emptyset\).
3. \(A \subseteq P \times T \cup T \times P\) is a set of directed arcs.
4. \(B\) is a finite set of non empty colour sets (types).
5. \(V\) is a finite set of typed variables such that: \(\forall v \in V\ \ Type[v] \in B\).
6. \(C : P \rightarrow B\) is a colour set function assigning a colour set to places.
7. \(G : T \rightarrow \mathit{Expr}_{\Sigma (V)}\) is a guard function.
8. \(EX : A \rightarrow \mathit{Expr}_{\Sigma (V)}\) is an arc expression function.
9. \(I : A \rightarrow \mathit{Expr}_{\Sigma (V)}\) is an initialisation function.
10. \(B \subseteq P \times T\) is a set of directed inhibitor arcs.
Coloured Petri nets

A modularity mechanism: place fusion

- strong constraint: requirement that the model be compositional so as to map the inductive structure of the chronicle language.

- In [CP92], definition of Modular CPN $MCPN = (S, PF, TF)$.

- Problematics of the definition of place fusion:
 - compositional model \rightarrow fusion of MCPN instead of CPN
 - CPN Tools functionality: change of initial markings and initial types after a place fusion.

- Accordingly, modification of [CP92] to define MCPN, MCPN fusion, and the resulting CPN.
A chronicle recognition model

Outline

1 Chronicles: a behaviour detection formalism

2 Coloured Petri nets

3 A chronicle recognition model
A chronicle recognition model

Design stages

1st model:

- modular model
- one token in each place containing lists of recognitions
- non-deterministic: necessity to define a transition firing strategy
- non-concurrent
- no event flow management

A chronicle recognition model

Design stages

2nd model: transition to multi-token nets

- modular model
- one token for each recognition
- first control structures
- beginning of some concurrency
- no event flow management
3rd model: adding a control structure for event flow management

- modular model
- one token for each recognition
- deterministic model
- concurrent model
- event flow management

A chronicle recognition model

Structure of net recognising chronicle A (including the event counter)

event counter (CPT)
A chronicle recognition model

Net recognising chronicle A (including the event counter)
A chronicle recognition model

Token splitter
Nets will be built in 2 steps:

1. main mechanism of the recognition process $N'(C)$
2. fusion with the event counter CPT to build $N(C)$

$$N(C) = Fusion \left(\{ N'(C), CPT \}, \{ (Go(CPT), \{ Go(CPT), Go(C) \}), \right.$$
$$\left. (Present(CPT), \{ Present(CPT), Present(C) \}), \right.$$
$$\left. (End(CPT), End(CPT), End(C) \} \right) \}$$
A chronicle recognition model

Sequence and disjunction on chronicle $A \parallel (B \ A)$
A chronicle recognition model

Absence on chronicle \((A\ B) – [D]\)
A chronicle recognition model

State Space of \(N(A \parallel (B \ A)) \) **on event flow** \(\varphi = (b, a, a) \)

- regardless of the order in which the enabled transitions are fired, always the same recognitions after each event
- concurrency retained
A chronicle recognition model

Conclusion and perspectives

- a formal framework for behaviour recognition using CPN with inhibitor arcs and place fusion
- strong constraints on the model:
 - compositionality,
 - determinism,
 - concurrency

- extend the construction of the nets to other constructs of the chronicle language (continuous time constraints, dealing with event enriched with attributes, ...)
- prove the adequacy of the Petri net model with the set semantics of chronicles
- put to use our Petri net behaviour recognition model for applications in the aerospace industry