Building a Symbolic Model Checker from Formal language Description

ΣDD and StrataGEM

Didier Buchs and Edmundo Lopez

Geneva University

5 mars 2015
Motivations

- Difficult to build your own symbolic model checker
- Hard to reuse existing work
 - Semantic construction
 - Optimisation
 - Decision Diagram encoding

\[M \models \Phi \iff DDCompute_\Phi(Enc_{DD}(M)) \]
Remark:

- SAT more popular i.e. modular and based on propositional logic:

\[M \models \Phi \iff \text{SatCompute}(\text{Enc}_{\text{prop}}(\Phi) \land \text{Enc}_{\text{prop}}(M)) \]
Observation:

- Large semantic gap between analysed language and DD
- Decision Diagram based on set of items:
 \[
 \text{Enc}: \emptyset(\text{States}) \rightarrow DD
 \]
 \[
 \text{Enc}(s_1 \cup s_2) = \text{Enc}(s_1) \cup_{DD} \text{Enc}(s_2)
 \]
- Can we describe them state by state?
- Can we extend the computations to state efficiently?

\[
M \models \Phi \iff DD\text{Compute}(\text{Enc}_{DD}(\text{RewTr}(\Phi)) \circ \text{Enc}_{DD}(\text{RewTr}(M)))
\]
Introduction : Topics

- Points to address
 - How to express Semantics?
 - What Model Checking technique?
 - How to express Computations?
Introduction : Topics

• Points to address
 • How to express Semantics?
 • What Model Checking technique?
 • How to express Computations?

• Formal Basis
 • ΣDD
 • Term Rewriting
 • Strategies
Introduction : Global view

- Formalism
 - Abstract Semantics (SOS Rules)
 - User defined translation
 - Set rewriting (Strategies)
 - Automated translation
 - Symbolic Structures (Decision Diagrams)

Our approach

This Presentation
Credits

- Prof invité (2007) at LIP6,
 - SDD : Jean-Michel Couvreur and Yann Thierry-Mieg
 - Operations : Alexandre Hamez and Alban Linard

- Collaboration

- Work done at SMV, University of Geneva
 - ΣDD (2009) : Steve Hostettler and Edmundo Lopez
 - Alpina (2012) : Steve Hostettler and Alexis Marechal
Terms

- A signature $\Sigma = \langle S, Op \rangle$.

 $S = \{\text{bool}, \text{nat}, \text{list}\}$

 $Op = \{ 0 : \rightarrow \text{nat};$
 $s : \text{nat} \rightarrow \text{nat};$
 $+ : \text{nat}, \text{nat} \rightarrow \text{nat}; \}$

- Inductively defined terms: T_{Σ}
 $0 + s(s(0))$

- Inductively defined terms with variables: $T_{\Sigma}(X)$
 $0 + s(s(x))$
Encoding : A ’n’ digit counter

Signature
null : → counter;
digit : nat10, counter → counter;

Terms :

digit(d₃, digit(d₂, digit(d₁, null)))

digit(s(s(0)), digit(s(0), digit(0, null)))

"2 1 0"
Rewriting

Rewrite rule: \(t_l, t_r \in T_\Sigma(X) : t_l \rightsquigarrow t_r \)

Example (functional rules):
Rule 1: \(+(0, x) \rightsquigarrow x \)
Rule 2: \(+(s(x), y) \rightsquigarrow s(+ (x, y)) \)

rewriting as computation of semantics
\(+(s(0), s(0)) \rightsquigarrow s(+ (0, s(0))) \rightsquigarrow s(s(0))) \)
Rewriting for states

Example (partial/basic rules):

\[\text{digit}(X, C) \leadsto \text{digit}(s(X), C)\]

\[\text{digit}(X, \text{digit}(s(s(s(s(s(s(0))))))))), C)) \leadsto \text{digit}(s(X), \text{digit}(0, C))\]

What about combining these rules?

Semantics defined on basic rewriting and strategies:

\[\text{Reach}_M(s_0) = \left\{ s' \mid s_0 \leadsto . \leadsto .s' \right\} = \{ s_1, s_2, \ldots, s_n \} \]
Set of terms

We propose to consider set of terms: \(s = \{ t_1, t_2, \ldots, t_n \} \)

\[
Rew(\{t_1, t_2, \ldots, t_n\}) = \bigcup_{t_i} Rew(t_i)
\]

- Different (choice) strategies on rewriting of confluent and terminating systems produce similar results \(Rew_{strat}(s) = Rew_{strat'}(s) \).
In ΣDD a structure represents a set of terms.

$$\sigma \in \text{SIGDD}_\Sigma , \sigma = \text{enc}(\{t_1, t_2, \ldots, t_n\}) \text{ where } t_i \in T_\Sigma$$

$$\sigma \in \text{SIGDD}_\Sigma , \text{dec}(\sigma) = \{t_1, t_2, \ldots, t_n\} \text{ where } t_i \in T_\Sigma$$

Encoding and decoding inc and dec are homomorphisms.

$$\forall \sigma \in \text{SIGDD}_\Sigma , \sigma = \text{enc}(\text{dec}(\sigma))$$

$$\forall t_i \in T_\Sigma , \{t_1, t_2, \ldots, t_n\} = \text{dec}(\text{enc}(\{t_1, t_2, \ldots, t_n\}))$$

Perform rewriting on ΣDD :

$$\text{Rew}(s) = \text{dec}(\text{Rew}_{\Sigma DD}(\text{enc}(s)))$$
Set of terms

\[\{ + (0, s(0)), + (s(0), s(0)) \} \]
Set of terms

\[\{ + (0, s(0)), +(s(0), s(0)) \} \]
Normal Form

Rule 1 : \((0, x) \leadsto x\)
Rule 2 : \((s(x), y) \leadsto s(+(x, y))\)
\(\{s(0), s(s(0))\}\)

Didier Buchs and Edmundo Lopez
Building a Symbolic Model Checker from Formal language Description/5 mars 2015
More sharing on set of terms

\{ + (0, + (0, s(0))), + (s(s(0), + (0, s(0))), + (0, + (s(0), s(0))), + (s(s(0), + (s(0), s(0)))) \}
Sharing/Rewriting on set of terms

Normal form: \{ s(0), s(s(0)), s(s(s(0))), s(s(s(s(0)))) \}

Rewrite of several terms in one step!
Complete Atomic Boolean Algebra (CABA). A complete Boolean Algebra is a (complete distributive lattice)
\[\langle L, \lor, \land, 0, 1 \rangle \]
equipped with a unary \textit{complementation} operation \(\neg \), satisfying \(a \lor \neg a = 1 \) and \(a \land \neg a = 0 \) for all \(a \in L \).
Encoding Relation

Definition (Encoding Relation)

The binary relation \(R = \langle A, B, G \rangle \) is encoded by \(R' = \langle A', B', G' \rangle \), where \(A' \subseteq \mathcal{P}(A) \) and \(B' \subseteq \mathcal{P}(B) \), if and only if one of the following holds:

- \(G = \emptyset \) and \(G' = \{(A, \emptyset)\} \),
- \((x, y) \in G \iff (X, Y) \in G' \) with \(x \in X \) and \(y \in Y \)
Encoding Relation : example

\[G = \{(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)\} \]

we exhibit the encoding:

\[
\begin{align*}
A' &= \begin{cases}
\{1\}, & \{2\}, & \{3, 4\}
\end{cases} \\
B' &= \begin{cases}
\{1\}, & \{1, 2\}, & \{1, 2, 3\}
\end{cases} \\
G' &= \begin{cases}
(\{1\}, \{1\}), & (\{2\}, \{1, 2\}), & (\{3, 4\}, \{1, 2, 3\})
\end{cases}
\end{align*}
\]
Injective partitionned functions (IPF)

The set of IPF between A and B, noted $\Delta(A, B)$, is defined as follows:

$$\Delta(A, B) = \{ f : \pi_f \to \mathcal{P}(B) \setminus \emptyset_B \mid \pi_f \subset \mathcal{P}(A) \setminus \emptyset_A \text{ and } \forall X, Y \in \pi_f : X \neq Y \implies X \wedge Y = \emptyset_A \text{ and } f(X) \neq f(Y) \}$$

$$\cup \{ 1_A \mapsto 0_B \}$$
The CABA structure of $\mathcal{B}(A, B)$

$\Delta(A, B)$ is CABA.

- \cup, \cap on $\Delta(A, B)$
- \neg on $\Delta(A, B)$
n-ary relation: currying (IIPF)

As example, we define the ternary relation \(\text{the-sum-is-pair} = \langle A, B, C, G \rangle \), with \(A = \{1, 2, 3, 4\} \), \(B = \{1, 2, 3\} \), \(C = \{1, 2\} \) and

\[
G = \{(1, 1, 2), (1, 2, 1), (1, 3, 2), (2, 1, 1), (2, 2, 2), (2, 3, 1), (3, 1, 2), (3, 2, 1), (3, 3, 2), (4, 1, 1), (4, 2, 2), (4, 3, 1)\}
\]

We can encode this relation in an IPF \(f \in \Delta_{A,B,C} \):

\[
f : \begin{cases}
\{1, 3\} &\mapsto f_1 \\
\{2, 4\} &\mapsto f_2
\end{cases}
\]

\[
f_1 : \begin{cases}
\{1, 3\} &\mapsto g_2 \\
\{2\} &\mapsto g_1
\end{cases}
\]

\[
f_2 : \begin{cases}
\{1, 3\} &\mapsto g_1 \\
\{2\} &\mapsto g_2
\end{cases}
\]

\[
g_1 : \{1\} \mapsto 1 \\
g_2 : \{2\} \mapsto 1
\]
Definition (ΣDD)

Let $\Sigma = \langle S, F \rangle$ and X be a set of variables. The set of ΣDD over Σ and X consists of a family $(\Sigma \text{DD}^{\Sigma,X}_s)_{s \in S}$, where each $\Sigma \text{DD}^{\Sigma,X}_s$ is limit of the sequence defined as:

- $\Sigma \text{DD}^0_s = \Delta F_{\epsilon,s} \cup X_s$
- $\Sigma \text{DD}^{n+1}_s = \Sigma \text{DD}^n_s \cup \bigcup_{F_{s_1 \ldots s_k}, s \in F} \Delta (F_{s_1 \ldots s_k}, s \Delta \Sigma \text{DD}^n_{s_1}, \ldots, \Sigma \text{DD}^n_{s_k})$
Establish links between Rewriting techniques and operations on decision diagrams. We would have **performance** in mind.
Reminder on Rewriting a la TOM

Based on elementary rewrite rules, we can apply on terms a basic rewrite step.

\[\text{Rew}_{Ax}[t] = \ldots \]

\[
\exists \sigma, \\
(\sigma(l) = t) \Rightarrow \text{Rew}_{Ax \cup \{<l,r>\}}[t] = \sigma(r)
\]
Reminder on Strategies

Way to find the context of a rewriting step!

\[Strat(S) : (T_\Sigma \cup \{\text{fail}\}) \rightarrow (T_\Sigma \cup \{\text{fail}\}) \]

More generally:

\[Strat(S) : (\varnothing(T_\Sigma) \cup \{\text{fail}\}) \rightarrow \varnothing(T_\Sigma) \cup \{\text{fail}\} \]

If \(Strat(s) \) is defined, terms \(t \) will be rewritten with:

\[Strat(Rew_{Ax})[t] \]

Obviously:

\[(S)[\text{fail}] = \text{fail} \]
Reminder on Strategies:

Basic operations 1 (TOM)

\[
\begin{align*}
(\text{Identity})[t] &= t \\
(\text{Fail})[t] &= \text{fail} \\
(\text{Sequence}(s1, s2))[t] &= \text{fail} \iff (s1)[t] = \text{fail} \\
(\text{Sequence}(s1, s2))[t] &= (s2)[t'] \iff (s1)[t] = t'
\end{align*}
\]

\[
\begin{align*}
(\text{Choice}(s1, s2))[t] &= t' \iff (s1)[t] = t' \\
(\text{Choice}(s1, s2))[t] &= (s2)[t] \iff (s1)[t] = \text{fail}
\end{align*}
\]
Strategies on sets

Natural extension

\[S[\{t_1, \ldots, t_n\}] = \{S[t_1], \ldots, S[t_n]\} \]

Set strategies

\[\text{Union}(S_1, S_2)[T] = S_1[T] \cup S_2[T], \text{ if both succeed} \]

\[\text{Fixpoint}(S)[T] = \mu T. S[T] \]
Restrictions

terminating

\[x \sim s(x) \]
\[s(x) \sim + (x, y) \]
\[+ (x, y) \sim + (y, x) \]

linear

\[+ (x, x) \sim x \]
\[+ (x, y) \sim + (x, x) \]

no-condition

\[x > y \Rightarrow s(x) - s(y) = x - y \]
Example of strategies

Innermost Evaluation:

\[\text{Try}(S) = \text{Choice}(S, \text{Identity}) \]

\[\text{Innermost}(S) = \mu x. \text{Sequence}(\text{All}(x), \text{Try}(\text{Sequence}(S, x))) \]
Computation on ΣDD

- ΣDD employs homomorphisms (set regularity) for implementing rewriting, $Rew_{\Sigma DD} \in Hom$.
- These homomorphisms can be defined for strategies: $Rew_{strat,\Sigma DD}$.
- On terminating and confluent systems ΣDD, rewriting respects sets: $Rew_{strat,\Sigma DD} \in Hom$ for deterministic $strat$ strategies.

Some strategies are better (performance) than others as in rewriting and similarly in decision diagrams.
IPF can be defined with different representation (automaton, pressburger arithmetic,...), so do ΣDD...
IPF can be defined with different representation (automaton, pressburger arithmetic,...), so do ΣDD

can we compose Rew, ... easily? by strategies?
Conclusion

- IPF can be defined with different representation (automaton, pressburger arithmetic,...), so do ΣDD
- Can we compose Rew, ... easily? by strategies?
- Can we define Design Patterns (Edmundo’s talk)?
Conclusion

- IPF can be defined with different representation (automaton, pressburger arithmetic,...), so do \(\Sigma DD \)
- can we compose Rew, ... easily? by strategies?
- Can we define Design Patterns (Edmundo’s talk)?
-

Didier Buchs and Edmundo Lopez Building a Symbolic Model Checker from Formal language Description/5 mars 2015
Thank You for your attention!