
Weakly Bounded Petri Nets

Jörg Desel

KU Eichstätt-Ingolstadt

Evry, March 5th, 2010, séminaire MeFoSyLoMa

Weakly Bounded Petri Nets

Attention:
Work in Progress!

Is this Petri net bounded?

No, the place s is unbounded!

producer consumer

buffer s

Places s1 and s2 are unbounded

The place s1 is „worse unbounded“

producer consumer

buffer
s1

buffer s2

weakly bounded not
weakly bounded

Why weakly bounded ?

Analogy to weak liveness:

not live

Why weakly bounded ?

Analogy to weak liveness:

not live

Why weakly bounded ?

Analogy to weak liveness:

not live

Why weakly bounded ?

Analogy to weak liveness:

weak liveness:
choices can be

controlled such that
the controlled net

behaves lively

Why weakly bounded ?

Analogy to weak liveness:

weak boundedness:
concurrency can be
controlled such that
the controlled net

behaves boundedly

Petri nets without branching places

Petri nets without branching places

Suggestion for a definition of weak boundedness:
• We are allowed to determine the (relative) speed of the

components

For each occurrence sequence, we are allowed to change
the order of concurrent transitions

Necessary requirement:
no component is (or becomes) inactive
i.e., we assume progress (weak liveness)

Petri nets without branching places

Progress assumption:

If transition t is enabled then t eventually occurs

An occurrence sequence will be called progressing,
if it satisfies the progress assumption

Petri nets without branching places

Definition

A place s is called weakly k-bounded
if each progressing occurrence sequence can be permuted
such that in the resulting occurrence sequence
s carries never more than k tokens

A Petri net is called weakly k-bounded
if all ist places are weakly k-bounded.

A Petri net is called weakly bounded
if each progressing occurrence sequence can be permuted
such that in the resulting occurrence sequence
only finitely many markings are reached

Petri nets without branching places

Observation

weak k-boundedness implies weak boundedness
(if the set of places is finite)

weak boundedness implies weak k-boundedness for some k

This does not hold if further assumptions are made
for example:

- if the consumer is generally faster than the producer
(talking about the average speed)

Occurrence sequence: b a b a c d b a b a c d b a b a c d …
Permutation: b a c d b a c d b a c d b a c d b a …

Example

a b c d

Definition using partially ordered occurrence nets?

b a b a

c d c

b a b a

c

but ….

Petri nets with branching places

Idea (Cortadella, Kondratyev et. al.):

Petri nets model the control flow of concurrent programs
which are executed sequentially (e.g. on one circuit)

The relative speed of the components can be controlled.
Buffers are modelled by weakly bounded places.

Choices depend on (unknown) data.
So choices can not be controlled

weakly bounded

weakly bounded ???

Progress assumption:

If t is enabled then
either t occurs or a transition which is in conflict with t

An occurrence sequence is progressing
if it satsifies the progress assumption.

t

a transition in conflict with t

Fairness:

Each possible alternative will be selected eventually
(each loop terminates …)

An occurrence sequence is called fair
if it satisfies the fairness assumption

both transitions
occur eventually

t occurs
eventually t

weakly bounded !!!

Petri nets with branching places

Definition

A place s is called weakly k-bounded,
if each progressing fair occurrence sequence can be permuted
where the order of alternatives (decision of choices) is kept
such that in the resulting occurrence sequence
s carries never more than k tokens

A Petri net is called weakly k-bounded
if all ist places are weakly k-bounded

A Petri net is called weakly bounded,
if each progressing fair occurrence sequence can be permuted
where the order of alternatives (decision of choices) is kept
such that in the resulting occurrence sequence
only finitely many markings are reached

A result

restricting assumptions:

finitely many live state machines
+ buffer places

a connected Petri net

the net (composed state machines + buffers) is live

choices are either free-choice (data dependent, if-then-else)
or controlled by buffer places (select statement)

Name: coupled state machines

A coupled state machine

state machines

Buffer places

data dependent choice

buffer controlled choice

The Result

A coupled state machine is weakly bounded

if and only if

The rank of ist incidence matrix equals I T I – I A I + I A I – 1

where
T – set of transitions
A – set of free-choice alternatives

The result

Another formulation of

The rank of ist incidence matrix equals I T I – I A I + I A I – 1:

I Linearly independent T-invariants I =
1 + number of free-choice alternatives

0 Alternativen 1 Alternative 2 Alternativen

1 T-invariant = 1 + 0 alternativs

0 T-invariants ≠ 1 + 0 alternativs

2 T-invariants = 1 + 1 alternativs

3 T-invariants = 1 + 2 alternativs

2 T-Invariants ≠ 1 + 2 alternativs

2 T-invariants = 1 + 1 alternativs

This Petri net is weakly bounded
but not weakly k-bounded for any k

Schedulability Analysis of Petri Nets
Based on Structural Properties

Cong Liu1, Jörg Desel2 ,
Alex Kondratyev3, Yosinori Watanabe3,

Alberto Sangiovanni-Vincentelli1

1University of California, Berkeley, USA
2Katholische Universität Eichstätt-Ingolstadt, Germany

3Cadence Berkeley Laboratories, USA

ACSD 2006 / Fundam. Inform. 86(3): 325-341 (2008)

Scheduling Concurrent Programs

• The problem:
Given a set of concurrent non-terminating processes communicating
through channels with infinite capacity,
is there a sequential execution where
channels are bounded?

IN

CHAN

while(1){
for(i=0,y=0;i<N;i++){

read(CHAN, x, 2);
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

while(1){
read(IN, a, 1);
b = a * a;
write(CHAN, b, 1);

}

OUT

Scheduling Concurrent Programs

• The problem:
Given a set of concurrent non-terminating processes communicating
through channels with infinite capacity,
is there a single process comprising the concurrent processes
where channels are variables (arrays)?

OUT

while(1){
for (i=0,y=0;i< N;i++){

read(IN, a, 1);
b = a * a;
x[0] = b;
read(IN, a, 1);
b = a * a;
x[1] = b;
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

IN

IN

CHAN

while(1){
for(i=0,y=0;i<N;i++){

read(CHAN, x, 2);
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

while(1){
read(IN, a, 1);
b = a * a;
write(CHAN, b, 1);

}

OUT

Scheduling Classification

• Dynamic scheduling
– Make all scheduling decisions at run-time
– Context switch overhead

• Static scheduling [Lee 87]
– Make all scheduling decisions at compile-time
– Reduce context switch overhead
– Restricted to specification without data-dependent controls

(e.g. if-then-else)

• Quasi-static scheduling
– Allow specification to have data-dependent controls
– Perform static scheduling as much as possible
– Leave data-dependent choices to be resolved at run-time

Quasi-Static Scheduling [Cortadella et al 00]

• Translate concurrent programs to a Petri net
• Find a quasi-static schedule for the Petri net
• Generate a sequential program from the schedule

p1p2p4p7

IN

IN

p2p5

p2p6
p2p5p8

C

E

OUT

p2p7

p1p2p7

p2p4p7

p3p7

p2p4p4p7

p3p4p7

D

A

B
A

B

F
IN

CH

while(1){
for(i=0,y=0;i<N;i++){

read(CH, x, 2);
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

while(1){
read(IN, a, 1);
b = a * a;
write(CH, b, 1);

}

OUT

OUT

while(1){
for (i=0,y=0;i< N;i++){

read(IN , a, 1);
b = a * a;
x[0] = b;
read(IN , a, 1);
b = a * a;
x[1] = b;
y = y+x[0]+2*x[1];

}
write(OUT , y, 1);

}

IN

A

IN

B

2
OUT

C

D E

F

p1
p2

p3

p4

p5

p6

p7 p8

Concurrent Programs → Petri Net

A

IN

B
2

OUT

C

D E

IN

CHAN

while(1){
for(i=0,y=0;i<N;i++){

read(CHAN, x, 2);
y = y+x[0]+2*x[1];

}
write(OUT, y, 1);

}

while(1){
read(IN, a, 1);
b = a * a;
write(CHAN, b, 1);

}

OUT

F

Petri Nets and Free Choice Sets

{C, D} is called a

Free Choice Set (FCS).

It represents a data-
dependant branch
(if-then-else, loop)

We assume that each
Free Choice Set has
exactly two elements

F

D

A

B

C

E

Petri Nets and Free Choice Sets

F

D

A

B

C

E

Several input transitions ?
(transitions with empty pre-set)

Petri Nets and Free Choice Sets

F

D

A

B

C

E

All input transitions
(transitions with empty pre-set)

generate a single Free Choice Set

Petri Nets and Free Choice Sets

F

D

A

B

C

E

All input transitions
(transitions with empty pre-set)

generate a single Free Choice Set

We assume that each
Free Choice Set has exactly

two elements

Schedule of a Petri net

p2p5

p2p6
p2p5p8

C

E

OUT

p2p7

p1p2p7

p2p4p7

p3p7

p1p2p4p7

p2p4p4p7

p3p4p7

D

IN

A

B A
IN

B

FA

IN

B

2
OUT

C

D E

F

p1p2

p3

p4

p5

p6

p7 p8

– finite directed graph with a “root”
– Vertices: mapped to markings, root to initial marking
– Edges: transition occurrences, changing the marking
– Branching vertex: corresponds to a Free Choice Set
– strongly connected

Schedulability
A Petri net is schedulable if it has a schedule
Question: Is a given Petri net schedulable?

Is a given Petri net not schedulable?

Solution 1:Try to construct a schedule
very time consuming

Solution 2: Employ necessary conditions for schedulability
which are based on the Petri net structure
and hence efficient to decide.

» Checking Cyclic Dependence of Transitions using
Linear Programming

» Checking a Rank Condition using Linear Algebra

Experiments

<0.01s

<0.01s

<0.01s

<0.01s

Rank SchedulerCDC#FCS#Arc#T#P

>24hr0.16s151847272MPEG4dec

>24hr0.25s38358144116MPEG2dec1

>24hr0.04s25330124117MJPEGenc

>24hr0.19s6642726JPEGenc1

• Codecs
– PVRG-JPEG encoder [Hung 93]
– Motion-JPEG encoder [Lieverse 01]
– Philips MPEG2 decoder [Wolf 99]
– XviD MPEG4 encoder [Broekhof 04]

Related work

Weakly bounded Message Sequence Charts

(Anca Muscholl, Blaise Genest, Dietrich Kuske)

Open Questions

Decidability for the general case
(idea: exclude loops in a coverability graph

Algorithms

Further interpretations (→ Monika Heiner)

Precise relation to weakly bounded MSCs

…

