A Concurrency-Preserving Translation
from Time Petri Nets
to Networks of Timed Automata

Sandie Balaguer, Thomas Chatain, Stefan Haar

INRIA & LSV — ENS Cachan, CNRS

MeFoSyLoMa Seminar — May 6, 2011



@ Introduction
@ Motivation
@ Timed and concurrent models

@ Partial order semantics
@ Timed traces
@ Distributed timed language

© Decomposing a PN in processes
@ S-invariants
@ Decomposition

@ Translation from TPN to NTA
o Adding clocks
o Know thy neighbour!

© Conclusion



@ Introduction
@ Motivation
@ Timed and concurrent models



Introduction

Motivation

Concurrency

@ Two actions that might be performed in any order leading to the same state
are concurrent. Concurrency can be used to improve the analysis of
distributed systems.

@ The definition of concurrency in timed systems is not clear since events are
ordered both by their occurrence dates and by causality.

2 formalisms

o Networks of timed automata (NTA)
@ Time Petri nets (TPN)

Translation between formalisms

@ Theoretical reasons (comparison)
@ Practical reasons (verification tools)

4/28



Introduction

Motivation

@ Translations from TPN to NTA with preservation of timed words but loss of

concurrency
Concurrency-preserving translation

@ Runs are represented as timed traces # timed
words. The translation preserves timed traces.

@ Some hidden dependencies caused by time are
made explicit.

(a,1) ¢ (c,2)
(b,2)

(a,2) ¢ (c,4)

(d,4)

5/28



Introduction

Timed Automata [Alur, Dill, 94]

Definition (Timed Automaton)

A timed automaton is a tuple
A= (L,ly,C,%, E, Inv) where: <4 @
@ L is a set of locations,

@ /o € L is the initial location, z>3 r=4
o C is a finite set of clocks, ¢ ¢
{z}

@ X is a finite set of actions,
@ EC LxB(C)xXx2%x Lis a set of edges, —(to)

e Inv: L — B(C) assigns invariants to locations.

@ A location must be leaved when its invariant reaches its limit.

@ An edge cannot be taken if its guard is not satisfied.

6/28



Introduction

Networks of Timed Automata: Al ... [[A,
Action step: (7,v) % (&)
o If all the automata that share a are ready to perform it.

o Edges labeled by a are taken simultaneously in these automata.

Delay step: Vd € Rso, (Z,v) % (7,v + d)
@ v + d respects the invariants of the current locations.

b, {z}
r<1@) ®

(507£2) 1
(0,0)

7/28



Introduction

Networks of Timed Automata: A||... |4,

Example run
b, {x}
v @ ®)

>3 r=4 y=1
a c c d
{z} {y}
-® @<

(orts) 1. (borta)
00 Ly

7/28



Introduction

Networks of Timed Automata: Al ... [[A,

Example run
b, {z}
v @ ®)

x >3 rx =4 y=1
a c C d
{«} {y}
— () —G)y<1

(Lo, £2) (Lo, £2) (bo,03) 2.
00 Ay @y

7/28



Introduction

Networks of Timed Automata: Al ... [[A,

Example run
b, {z}
v @ ®)

xr >3 rx =4 y=1
a c C d
{z} {y}
— ) —G)y<1

(lo,la) 1 (Lo,ls) d. (Co,l3) 25 (Lo,€3)
(8,0) — ((1),1) - (3,1?3 2(3.3,3?.’5)_)

7/28



Introduction

Networks of Timed Automata: Al ... [[A,

Example run
b, {z}
<@ ®)

>3 r=4 y=1
a c C d
{«} {y}
— () —G)y<1

(bo,l2) 1 (Lo,ls) d. (fo,l3) 25 (Lo,€3) o (£1,03)
(8,0) — ((1),1) - (3,1?3 £>(3.3,3?13)_>(0,3.g)

7/28



Introduction

Networks of Timed Automata: Al ... [[A,

Example run
b, {z}
r< @ ®)

r>3 =4 y=1
a c c d
{z} {y}
—» —»ygl
(1,03) ¢

(bo,l2) 1 (Lo,ls) d. (fo,l3) 25 (Lo,€3) o (£1,03)
(8,0) — ((1),1) - (3,1?3 £>(3.;,3?}))_>(0,3.g)i’(4,7.5)_>'”

7/28



Introduction

Time Petri Nets [Merlin, 74]

(P, T, F, My, efd, lfd)
o efd : T — R earliest firing delay
o [fd : T — R U {oo} latest firing delay

NN
Y

p4©

8/28



Introduction

TPN Semantics
@ ¢t is enabled in M: ¢ € enabled(M) < °t C M
o firing ¢ from M: M 5 (M’ = M — *t 4 t*)

o t' is newly enabled by the firing of ¢ from M:  intermediate semantics
Tenabled(t', M,t) = (t' € enabled(M')) A (t' ¢ enabled(M — °t)))

Discrete transition: V¢ € enabled(M), (M, v) B (M’ V") iff
o efd(t) < v(t),

o Vi' € T,/ () = { 0 if Tenabled(t', M, t)

v(t')  otherwise.

Continuous transition: ¥Yd € Rxq, (M, v) A (M,v+d) iff

o Vt € enabled(M),v(t) +d < Ifd(t) Ur8ENY

9/28



Introduction

TPN Semantics

Example run

A\
E\Pz/ e

P4O

{p07 p2}

2
0,,0,0) —

10/28



Introduction

TPN Semantics

Example run

A\
E\Pz/ Je

P4O

{po,p2}
(27 - 27 —)

{p07p2} 2 c
0,,0,0) — —

10/28



Introduction

TPN Semantics

Example run

A\
E\a}/ e

p4o
o )

10/28



Introduction

TPN Semantics

Example run

Q\
E\?z/ s

P4 O
O @R T e

10/28



Introduction

TPN Semantics

Example run

Q\
@\;z/ >

P4 O
oo R 5 R o B = ()

b and d are newly enabled.

10/28



Introduction

TPN Semantics

Example run

®\
E\?z/ >

P4 O
Oob) B B 5 G B = BT 2 )

10/28



Introduction

TPN Semantics

Can be seen as a TA

Tg <0ONTe <2

z.>1,c

xp >0
b, {za,xc}

Ta < 00

11/28



Introduction

TPN Semantics

Can be seen as a TA

Tg <0ONTe <2 Ta < 00
z.>1,c -
| xp >0

b, {Za,zc}

[2,2}%] g <2Ahze <2 g <2Ahap <0
Tq > 2 Tq > 2
25Q) d d

11/28



@ Partial order semantics
@ Timed traces
@ Distributed timed language



Partial order semantics

Partial order semantics for distributed systems

NTA and TPN represent distributed systems

o Composition of several (physical) components
@ Notion of process

e In a NTA, each automaton is a process.
o PNs usually built as products of transition systems

Usual semantics as timed words does not reflect the distribution of actions.
Partial order semantics reflects the distribution of actions.

13/28



Partial order semantics

Timed traces

A timed trace over the alphabet ¥, and the set of processes II = (my,...,m,) is a
tuple W = (E, %, A\, t, proc) where:
o F is a set of events,
< C (F x E) is a partial order on E (<, is a total order),
A E — Y is a labeling function,
t: E — R>o maps each event to a date,
proc : ¥ — 2 is a distribution of actions.

[0, oo [OW 1,2] - m =

3 (a,1) » (c,2)
: (,2) |
Q |

(a,2) » (c,4)

b4

14/28



Partial order semantics

Distributed timed language

Definition (Distributed timed language)

A distributed timed language is a set of timed traces.

@ A timed trace is defined by a timed word and a distribution of actions
(proc : ¥ — 21).

@ A distributed timed language is defined by a timed language and a
distribution of actions.

15/28



© Decomposing a PN in processes
@ S-invariants
@ Decomposition



Decomposing a PN in processes

S-invariants [Lautenbach, 75], [Reisig, 85], [Desel, Esparza, 95]. ..

X : P — N, solution of the equation X - N = 0, where N is the incidence matrix.

AN

N e

ty, to t3 tyg s

@ Or — 0 0
ml-1 1 0 0 0

|l 0 0 0 0 1

& | 0 0 -1 0 0

ps| 0 0 1 0 -1

Pl 0 0 0 1 -1

| 0 0 1 -1 0

17/28



Decomposing a PN in processes
S-invariants [Lautenbach, 75], [Reisig, 85], [Desel, Esparza, 95]. ..

X : P — N, solution of the equation X - N = 0, where N is the incidence matrix.

We consider S-invariants X s.t. X : P — {0, 1} (subsets of places).

@ Xisan S-invariant &Vt e T, Y X(p) = >, X(p)ie [*tNX|=[t"NX]|
pest pet*

e X is an S-invariant = VM, X - M =X - My ie. > M(p)= > My(p)
peEX peX

17/28



Decomposing a PN in processes

S-invariants as processes
o Anet (P,T,F)isan S-netif VteT,

| = |t*] = 1.

An S-net with one token can be seen as an automaton.

|
F EQ—

@ The subnet (P',T’,F’) of N is a P-closed subnet of N if 7/ = *P" U P’°.

Definition
The net N = (P, T, F) is decomposable iff there exists a set of P-closed S-nets
N; = (P, T;, F;) that covers N.

[Desel, Esparza, 95| Well-formed free-choice nets are covered by strongly
connected P-closed S-nets (S-components).

18/28



Decomposing a PN in processes

Decomposition

A Petri net (P, T, F) is decomposable in the subnets Ny, ..., N, iff there exists a
set of S-invariants {X7,... X, } such that,

o Vie[l.n],X;: P— {0,1},
X is the characteristic function of P; over P.
e Vie[l.n,VteT, > Xi(p)=1 (: > Xi(p)),
pe*t pEte
N; is an S-net.
e Vpe P> X;(p) >1

(]
Each place is in at least one component.

The processes are the P-closed subnets spanned by the supports of these
S-invariants.

Since each place is in at least one subnet and the subnets are P-closed, each
transition is also in at least one subnet and the net is covered.

19/28



Decomposing a PN in processes

Decomposition

An example

1
1
1
0 0
0

P2 P3s Pa D5 Pe Pr

p1

20/28



@ Translation from TPN to NTA
o Adding clocks
o Know thy neighbour!



Translation from TPN to NTA

Translation

PNV
wf

P4O

22/28



Translation from TPN to NTA

Translation

Decomposing the untimed PN.

22/28



Translation from TPN to NTA

Translation

Translating each subnet into an automaton.

AN

o {p )

ﬁ{\o o i
d

p4§

22/28



Translation from TPN to NTA

Translation

Adding timing constraints (resets, guards and invariants).

A
0, oo[ [OW

Dy
.

S
®—

? ? ? ?
a b b c
? ? ? ?

é

-~

@@

22/28



Translation from TPN to NTA

Translation t enabled = w(t) = {if?eii}(”(mi))

We add one clock to each automaton. The clock is reset on each edge.

| |
(bo) #2)
o, oo[ [o}E/CQ\f

a b b c
{z1} {z1} {z2} {z2}
® b3)
@

d
{z1}

22/28



Translation from TPN to NTA

Translation t enabled = w(t) = {if?eii}(”(mi))

We add guards. . ‘HIIILI }(v(mz)) > efd(t) & Vist t € X,v(x;) > efd(t)
i|tex;

Ooo[ U;()\}@/m] x>0 £1>0 22>0 2 > 1

a b b cC
( i\ {m) {m)\ ) )
@)

©—

%
S

@ ®
&

22/28



Translation from TPN to NTA

Translation t enabled = w(t) = {if?eii}(”(mi))

We add invariants. Inv;(p) = \,c. (t enabled = v(t) < Ifd(t))

J

pO D2 (K 71 < 00 @ T2 < 2
Ooo[ [00] 120 1:1>0 1:2>0 a:221
a
{z1} {xl} {xz} {x2}
Inv(p1) @ Inv(ps)
@

X1 2 2
d
{z1}
pa
Inv(d) Inv(b)
Inv(p1) = (p1 = 21 <2) A ((p1 Aps) = (min(z1,22) <0)))
=(z1 <2)A(=psV(z1 <0Vzz <0))
Inv(ps) = (p1 Ap3) = (min(z1,z2) < 0))
= (ﬁp1V(SC1 <0V z2 SO))

22/28



Translation from TPN to NTA

Translation

J

<9\A r1 < 00 @
000[ [O}]E/ 12] 1 >0 1?1>0 132>0 1’221
{1} {501} {502} {062}
Inv(p1) @ Inv(ps)
ZXW)

(1 <2)A(p3 V(1 <0V e <0))
(ﬁp] \/(.L] SO\/.’EQ SO))

I\/

e,_»,g_‘a
8
—
—

Inv(p;
Inv(p 3)

It is unavoidable to share clocks and states.

22/28



Translation from TPN to NTA

Properties of the translation

@ Timed bisimulation: (M, v) denotes a state of the NTA S and (M, v) a state
of the TPN V.

(M, 0)R(M,v) < Vt € enabled(M),v(t) = . ‘mlg }(v(xi))
i|tes;
We show that R is a timed bisimulation.
@ Distributed timed language equivalence:

o Timed bisimulation between the TTS of S and N.
o Bijection between the processes of S and those of N (same distribution of
actions up to a renaming of processes).

23/28



Translation from TPN to NTA

Size of the resulting NTA

Decomposition: at most | P| processes

@ at most |P|? locations,

e at most |T| x |P| edges (exactly >, [{i | t € X;}| edges).
Timing information:

@ at most |P| clocks,

o Sierlfilte i)

® > . crl{i|t € X} clock comparisons in the invariants (Inv(t) can be
attached to one place).

guards,

24/28



Translation from TPN to NTA

Know thy neighbour!

Given a TPN A, in general, there does not exist any NTA S using the local
syntax (clocks and current locations are not shared) such that A" and S have the
same distributed timed language.

1

IN

(3)«—

.’L’2§2

(®)—

I\/

o
0 1'120 1'220 1'221
a

b b c
{z1} {z1} {z2} {z2}
Inv(p1) @ Inv(ps) @

Y
o

GF‘H&H
8
=
.

25/28



Translation from TPN to NTA

Know thy neighbour!

Given a TPN WV, in general, there does not exist any NTA S using the local
syntax (clocks and current locations are not shared) such that A" and S have the
same distributed timed language.

Lemma

Let S be a network of n timed automata that do not read the state of the other

automata, then for any Wiy, ..., W, admissible timed traces without
synchronization and stopping at a same date 6, W, | -+ || W, is also an
admissible timed trace stopping at 6.
Proof
st D) T ) ™1 T2
(a,0) (a,0)
(c,1) (c,1)
(d,2) (c,2) (d,2)

25/28



Translation from TPN to NTA

Know thy neighbour!

Given a TPN A/, in general, there does not exist any NTA S using the local

syntax (clocks and current locations are not shared) such that A" and S have the
same distributed timed language.

Counterexample: W, || W(m should be admissible.
™1 T2 ™1 T2

,0)
\E/®\ (d,2) l (c,2) o
[0, oo[ [0,0] [1,2] [¢]

( W W
%] (a,0)
@

25/28



Translation from TPN to NTA

Reverse translation: from NTA to TPN

Sequential semantics: [Bérard, Cassez, Haddad, Lime, Roux, 06] When are Timed
Automata weakly timed bisimilar to Time Petri Nets?
But we want to preserve the distributed semantics.

@ Translation of each TA in a finite “time S-net” with one token

But finite time S-nets with 1 token are strictly less expressive than TA with 1
clock

—x>4,b
— Q — O #  time S-net with one token

26,28



Translation from TPN to NTA

Reverse translation: from NTA to TPN

Sequential semantics: [Bérard, Cassez, Haddad, Lime, Roux, 06] When are Timed
Automata weakly timed bisimilar to Time Petri Nets?
But we want to preserve the distributed semantics.

@ Translation of each TA in a finite “time S-net” with one token

But finite time S-nets with 1 token are strictly less expressive than TA with 1
clock

@ Considering the translation into more general nets,

T a T
P 1 /\ —_ 1 . -
*’O N Q % time S-net with one token

26,28



Translation from TPN to NTA

Reverse translation: from NTA to TPN

Sequential semantics: [Bérard, Cassez, Haddad, Lime, Roux, 06] When are Timed
Automata weakly timed bisimilar to Time Petri Nets?
But we want to preserve the distributed semantics.

@ Translation of each TA in a finite “time S-net” with one token

But finite time S-nets with 1 token are strictly less expressive than TA with 1
clock

@ Considering the translation into more general nets,
© Composing the nets.

T a T
P 1 /\ —_ 1 . -
*’O N Q % time S-net with one token

26,28



@ Introduction
@ Motivation
@ Timed and concurrent models

© Partial order semantics
@ Timed traces
@ Distributed timed language

© Decomposing a PN in processes
@ S-invariants
@ Decomposition

@ Translation from TPN to NTA
@ Adding clocks
@ Know thy neighbour!

© Conclusion



Conclusion

Conclusion

Summary
@ Timed trace and distributed timed language: description of a distributed
semantics where concurrency is not erased
@ Translation from a TPN to a NTA based on the decomposition in processes

o Correctness w.r.t. the distributed timed language
e Usable in practice (small tests with Uppaal)
o Readable and close to the modeled system: processes are preserved

Future work

o Identification of TPN with good decompositional properties (no need to share
clocks).
@ Explore timed concurrency
o Definition and properties
o Use in verification tools
[Lugiez, Niebert, Zennou, 05] A partial order semantics approach to the clock
explosion problem of timed automata
[Niebert, Qu, 06] invariants

28,28



	Introduction
	Motivation
	Timed and concurrent models

	Partial order semantics
	Timed traces
	Distributed timed language

	Decomposing a PN in processes
	S-invariants
	Decomposition

	Translation from TPN to NTA
	Adding clocks
	Know thy neighbour!

	Conclusion

