
A Concurrency-Preserving Translation
from Time Petri Nets

to Networks of Timed Automata

Sandie Balaguer, Thomas Chatain, Stefan Haar

INRIA & LSV – ENS Cachan, CNRS

MeFoSyLoMa Seminar – May 6, 2011

1 Introduction
Motivation
Timed and concurrent models

2 Partial order semantics
Timed traces
Distributed timed language

3 Decomposing a PN in processes
S-invariants
Decomposition

4 Translation from TPN to NTA
Adding clocks
Know thy neighbour!

5 Conclusion

1 Introduction
Motivation
Timed and concurrent models

2 Partial order semantics
Timed traces
Distributed timed language

3 Decomposing a PN in processes
S-invariants
Decomposition

4 Translation from TPN to NTA
Adding clocks
Know thy neighbour!

5 Conclusion

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Motivation

Concurrency

Two actions that might be performed in any order leading to the same state
are concurrent. Concurrency can be used to improve the analysis of
distributed systems.

The definition of concurrency in timed systems is not clear since events are
ordered both by their occurrence dates and by causality.

2 formalisms

Networks of timed automata (NTA)

Time Petri nets (TPN)

Translation between formalisms

Theoretical reasons (comparison)

Practical reasons (verification tools)

4/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Motivation

Translations from TPN to NTA with preservation of timed words but loss of
concurrency

Concurrency-preserving translation

Runs are represented as timed traces 6= timed
words. The translation preserves timed traces.

Some hidden dependencies caused by time are
made explicit.

(d, 4)

(a, 2) (c, 4)

(b, 2)

(a, 1) (c, 2)

π1 π2

5/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Timed Automata [Alur, Dill, 94]

Definition (Timed Automaton)

A timed automaton is a tuple
A = (L, `0, C,Σ, E, Inv) where:

L is a set of locations,

`0 ∈ L is the initial location,

C is a finite set of clocks,

Σ is a finite set of actions,

E ⊆ L× B(C)× Σ× 2C × L is a set of edges,

Inv : L→ B(C) assigns invariants to locations.

`0

`1x ≤ 4

x ≥ 3
a

{x}

x = 4
c

b, {x}

A location must be leaved when its invariant reaches its limit.

An edge cannot be taken if its guard is not satisfied.

6/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Networks of Timed Automata: A1‖ . . . ‖An
Action step: (~̀, v)

a→ (~̀′, v′)

If all the automata that share a are ready to perform it.
Edges labeled by a are taken simultaneously in these automata.

Delay step: ∀d ∈ R≥0, (~̀, v)
d→ (~̀, v + d)

v + d respects the invariants of the current locations.

`0`0

`1x ≤ 4

`2 y ≤ 1`2

`3

x ≥ 3
a

{x}

x = 4
c

b, {x}

y = 1

dc

{y}

(`0, `2)
(0, 0)

1−→

7/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Networks of Timed Automata: A1‖ . . . ‖An
Example run

`0`0

`1x ≤ 4

`2 y ≤ 1`2

`3

x ≥ 3
a

{x}

x = 4
c

b, {x}

y = 1

dc

{y}

(`0, `2)
(0, 0)

1−→ (`0, `2)
(1, 1)

d−→

7/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Networks of Timed Automata: A1‖ . . . ‖An
Example run

`0`0

`1x ≤ 4

`2 y ≤ 1

`3`3

x ≥ 3
a

{x}

x = 4
c

b, {x}

y = 1

dc

{y}

(`0, `2)
(0, 0)

1−→ (`0, `2)
(1, 1)

d−→ (`0, `3)
(1, 1)

2.5−→

7/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Networks of Timed Automata: A1‖ . . . ‖An
Example run

`0`0

`1x ≤ 4

`2 y ≤ 1

`3`3

x ≥ 3
a

{x}

x = 4
c

b, {x}

y = 1

dc

{y}

(`0, `2)
(0, 0)

1−→ (`0, `2)
(1, 1)

d−→ (`0, `3)
(1, 1)

2.5−→ (`0, `3)
(3.5, 3.5)

a−→

7/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Networks of Timed Automata: A1‖ . . . ‖An
Example run

`0

`1x ≤ 4 `1

`2 y ≤ 1

`3`3

x ≥ 3
a

{x}

x = 4
c

b, {x}

y = 1

dc

{y}

(`0, `2)
(0, 0)

1−→ (`0, `2)
(1, 1)

d−→ (`0, `3)
(1, 1)

2.5−→ (`0, `3)
(3.5, 3.5)

a−→ (`1, `3)
(0, 3.5)

4−→

7/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Networks of Timed Automata: A1‖ . . . ‖An
Example run

`0

`1x ≤ 4 `1

`2 y ≤ 1

`3`3

x ≥ 3
a

{x}

x = 4
c

b, {x}

y = 1

dc

{y}

(`0, `2)
(0, 0)

1−→ (`0, `2)
(1, 1)

d−→ (`0, `3)
(1, 1)

2.5−→ (`0, `3)
(3.5, 3.5)

a−→ (`1, `3)
(0, 3.5)

4−→ (`1, `3)
(4, 7.5)

c−→ · · ·

7/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Time Petri Nets [Merlin, 74]

(P, T, F,M0, efd , lfd)

efd : T → R earliest firing delay

lfd : T → R ∪ {∞} latest firing delay

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

8/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics

t is enabled in M : t ∈ enabled(M)⇔ •t ⊆M

firing t from M : M
t→ (M ′ = M − •t+ t•)

t′ is newly enabled by the firing of t from M : intermediate semantics

↑enabled(t′,M, t) =
(
t′ ∈ enabled(M ′)

)
∧
(
t′ /∈ enabled(M − •t))

)

Discrete transition: ∀t ∈ enabled(M), (M,ν)
t→ (M ′, ν′) iff

efd(t) ≤ ν(t),

∀t′ ∈ T, ν′(t′) =

{
0 if ↑enabled(t′,M, t)
ν(t′) otherwise.

Continuous transition: ∀d ∈ R≥0, (M,ν)
d→ (M,ν + d) iff

∀t ∈ enabled(M), ν(t) + d ≤ lfd(t) urgency

9/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics
Example run

•p0

a[0,∞[a

•p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

•p3

{p0, p2}
(0, , 0,)

2−→

b and d are newly enabled.

10/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics
Example run

•p0

a[0,∞[a

•p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2] c

•p3

{p0, p2}
(0, , 0,)

2−→ {p0, p2}
(2, , 2,)

c−→

b and d are newly enabled.

10/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics
Example run

•p0

a[0,∞[a

•p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

•p3

{p0, p2}
(0, , 0,)

2−→ {p0, p2}
(2, , 2,)

c−→ {p0, p3}
(2, , ,)

10−→

b and d are newly enabled.

10/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics
Example run

•p0

a[0,∞[a

•p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

•p3

{p0, p2}
(0, , 0,)

2−→ {p0, p2}
(2, , 2,)

c−→ {p0, p3}
(2, , ,)

10−→ {p0, p3}
(12, , ,)

a−→

b and d are newly enabled.

10/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics
Example run

•p0

a[0,∞[

•p1

d[2, 2]

p4

b[0, 0] b

•p2

c[1, 2]

•p3

{p0, p2}
(0, , 0,)

2−→ {p0, p2}
(2, , 2,)

c−→ {p0, p3}
(2, , ,)

10−→ {p0, p3}
(12, , ,)

a−→ {p1, p3}
(, 0, , 0)

b−→

b and d are newly enabled.
10/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics
Example run

•p0

a[0,∞[a

•p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

•p3

{p0, p2}
(0, , 0,)

2−→ {p0, p2}
(2, , 2,)

c−→ {p0, p3}
(2, , ,)

10−→ {p0, p3}
(12, , ,)

a−→ {p1, p3}
(, 0, , 0)

b−→ {p0, p2}
(0, , 0,)

b and d are newly enabled.

10/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics
Can be seen as a TA

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

p0, p2

xa ≤ ∞∧ xc ≤ 2

p1, p2

xd ≤ 2 ∧ xc ≤ 2

p4, p2

xc ≤ 2

p0, p3

xa ≤ ∞

p1, p3

xd ≤ 2 ∧ xb ≤ 0

p4, p3

xa ≥ 0
a

{xd}

xc ≥ 1, c

xc ≥ 1, c, {xb}

xd ≥ 2
d

xc ≥ 1, c

xa ≥ 0
a
{xb, xd}

xb ≥ 0
b, {xa, xc}

xd ≥ 2
d

11/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

TPN Semantics
Can be seen as a TA

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

p0, p2

xa ≤ ∞∧ xc ≤ 2

p1, p2

xd ≤ 2 ∧ xc ≤ 2

p4, p2

xc ≤ 2

p0, p3

xa ≤ ∞

p1, p3

xd ≤ 2 ∧ xb ≤ 0

p4, p3

xa ≥ 0
a

{xd}

xc ≥ 1, c

xc ≥ 1, c, {xb}

xd ≥ 2
d

xc ≥ 1, c

xa ≥ 0
a
{xb, xd}

xb ≥ 0
b, {xa, xc}

xd ≥ 2
d

11/28

1 Introduction
Motivation
Timed and concurrent models

2 Partial order semantics
Timed traces
Distributed timed language

3 Decomposing a PN in processes
S-invariants
Decomposition

4 Translation from TPN to NTA
Adding clocks
Know thy neighbour!

5 Conclusion

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Partial order semantics for distributed systems

NTA and TPN represent distributed systems

Composition of several (physical) components

Notion of process

In a NTA, each automaton is a process.
PNs usually built as products of transition systems

Usual semantics as timed words does not reflect the distribution of actions.
Partial order semantics reflects the distribution of actions.

13/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Timed traces

A timed trace over the alphabet Σ, and the set of processes Π = (π1, . . . , πn) is a
tuple W = (E,4, λ, t, proc) where:

E is a set of events,
4 ⊆ (E × E) is a partial order on E (4|πi

is a total order),
λ : E → Σ is a labeling function,
t : E → R≥0 maps each event to a date,
proc : Σ→ 2Π is a distribution of actions.

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

(d, 4)

(a, 2) (c, 4)

(b, 2)

(a, 1) (c, 2)

π1 π2

14/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Distributed timed language

Definition (Distributed timed language)

A distributed timed language is a set of timed traces.

A timed trace is defined by a timed word and a distribution of actions
(proc : Σ→ 2Π).

A distributed timed language is defined by a timed language and a
distribution of actions.

15/28

1 Introduction
Motivation
Timed and concurrent models

2 Partial order semantics
Timed traces
Distributed timed language

3 Decomposing a PN in processes
S-invariants
Decomposition

4 Translation from TPN to NTA
Adding clocks
Know thy neighbour!

5 Conclusion

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

S-invariants [Lautenbach, 75], [Reisig, 85], [Desel, Esparza, 95]. . .

X : P → N, solution of the equation X ·N = 0, where N is the incidence matrix.

•p1

t1

p2

t2

•p3

p4

t5

p5

t3

p6

p7

t4

t1 t2 t3 t4 t5
p1 1 −1 0 0 0
p2 −1 1 0 0 0
p3 0 0 0 0 1
p4 0 0 −1 0 0
p5 0 0 1 0 −1
p6 0 0 0 1 −1
p7 0 0 1 −1 0

17/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

S-invariants [Lautenbach, 75], [Reisig, 85], [Desel, Esparza, 95]. . .

X : P → N, solution of the equation X ·N = 0, where N is the incidence matrix.

We consider S-invariants X s.t. X : P → {0, 1} (subsets of places).

Properties

X is an S-invariant ⇔ ∀t ∈ T,
∑
p∈•t

X(p) =
∑
p∈t•

X(p) i.e. |•t ∩X| = |t• ∩X|

X is an S-invariant ⇒ ∀M , X ·M = X ·M0 i.e.
∑
p∈X

M(p) =
∑
p∈X

M0(p)

17/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

S-invariants as processes

A net (P, T, F) is an S-net if ∀t ∈ T , |•t| = |t•| = 1.

An S-net with one token can be seen as an automaton.

•

≡

The subnet (P ′, T ′, F ′) of N is a P-closed subnet of N if T ′ = •P ′ ∪ P ′•.

Definition

The net N = (P, T, F) is decomposable iff there exists a set of P-closed S-nets
Ni = (Pi, Ti, Fi) that covers N .

[Desel, Esparza, 95] Well-formed free-choice nets are covered by strongly
connected P-closed S-nets (S-components).

18/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Decomposition

Proposition

A Petri net (P, T, F) is decomposable in the subnets N1, . . . , Nn iff there exists a
set of S-invariants {X1, . . . Xn} such that,

∀i ∈ [1..n], Xi : P → {0, 1},
Xi is the characteristic function of Pi over P .

∀i ∈ [1..n],∀t ∈ T,
∑
p∈•t

Xi(p) = 1
(
=
∑
p∈t•

Xi(p)
)
,

Ni is an S-net.

∀p ∈ P,
∑
i

Xi(p) ≥ 1

Each place is in at least one component.

The processes are the P-closed subnets spanned by the supports of these
S-invariants.

Since each place is in at least one subnet and the subnets are P-closed, each
transition is also in at least one subnet and the net is covered.

19/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Decomposition
An example

•p1

t1

p2

t2

•p3

p4

t5

p5

t3

p6

p7

t4

X ·N = 0
X1 =

[
1 1 0 0 0 0 0

]
X2 =

[
1 1 1 1 1 0 0

]
X3 =

[
1 1 1 1 0 1 1

]
X4 =

[
0 0 1 1 0 1 1

]
X5 =

[
0 0 1 1 1 0 0

]
p1 p2 p3 p4 p5 p6 p7⇒

•p1

t1

p2

t2

•p3

t2

p4

t5

t3

p6

p7

t4

•p3

t2

p4

t5

p5

t3

20/28

1 Introduction
Motivation
Timed and concurrent models

2 Partial order semantics
Timed traces
Distributed timed language

3 Decomposing a PN in processes
S-invariants
Decomposition

4 Translation from TPN to NTA
Adding clocks
Know thy neighbour!

5 Conclusion

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Translation

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

22/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Translation

Decomposing the untimed PN.

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

•p0

a

p1

d

p4

b b

•p2

c

p3

22/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Translation

Translating each subnet into an automaton.

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

p0x1 ≤ ∞

p1Inv(p1)

p4

p2x2 ≤ 2

p3

a

d

b cb

22/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Translation

Adding timing constraints (resets, guards and invariants).

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

p0x1 ≤ ∞?

p1Inv(p1)?

p4

p2x2 ≤ 2?

p3?

a
?

?

?
d
?

?
b
?

?
c
?

?
b
?

22/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Translation t enabled =⇒ ν(t) = min
{i|t∈Σi}

(
v(xi)

)
We add one clock to each automaton. The clock is reset on each edge.

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

p0x1 ≤ ∞

p1Inv(p1)

p4

p2x2 ≤ 2

p3

a
x1 ≥ 0

{x1}

x1 ≥ 2
d
{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

22/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Translation t enabled =⇒ ν(t) = min
{i|t∈Σi}

(
v(xi)

)
We add guards. min

{i|t∈Σi}

(
v(xi)

)
≥ efd(t)⇔ ∀i s.t. t ∈ Σi, v(xi) ≥ efd(t)

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

p0x1 ≤ ∞

p1Inv(p1)

p4

p2x2 ≤ 2

p3

a
x1 ≥ 0

{x1}

x1 ≥ 2
d
{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

22/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Translation t enabled =⇒ ν(t) = min
{i|t∈Σi}

(
v(xi)

)
We add invariants. Invi(p) ≡

∧
t∈p•

(
t enabled ⇒ ν(t) ≤ lfd(t)

)
•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

p0x1 ≤ ∞

p1Inv(p1)

p4

p2x2 ≤ 2

p3Inv(p3)

a
x1 ≥ 0

{x1}

x1 ≥ 2
d
{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

Inv(p1) ≡

Inv(d)︷ ︸︸ ︷(
p1 ⇒ x1 ≤ 2

)
∧

Inv(b)︷ ︸︸ ︷(
(p1 ∧ p3)⇒ (min(x1, x2) ≤ 0))

)
≡ (x1 ≤ 2) ∧ (¬p3 ∨ (x1 ≤ 0 ∨ x2 ≤ 0))

Inv(p3) ≡ (p1 ∧ p3)⇒ (min(x1, x2) ≤ 0))
≡ (¬p1 ∨ (x1 ≤ 0 ∨ x2 ≤ 0))

22/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Translation

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

p0x1 ≤ ∞

p1Inv(p1)

p4

p2x2 ≤ 2

p3Inv(p3)

a
x1 ≥ 0

{x1}

x1 ≥ 2
d
{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

Inv(p1) ≡ (x1 ≤ 2) ∧ (¬p3 ∨ (x1 ≤ 0 ∨ x2 ≤ 0))
Inv(p3) ≡ (¬p1 ∨ (x1 ≤ 0 ∨ x2 ≤ 0))

It is unavoidable to share clocks and states.

22/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Properties of the translation
1 Timed bisimulation: (M,v) denotes a state of the NTA S and (M,ν) a state

of the TPN N .

(M, v)R(M,ν)⇔ ∀t ∈ enabled(M), ν(t) = min
{i|t∈Σi}

(
v(xi)

)
We show that R is a timed bisimulation.

2 Distributed timed language equivalence:

Timed bisimulation between the TTS of S and N .
Bijection between the processes of S and those of N (same distribution of
actions up to a renaming of processes).

23/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Size of the resulting NTA

Decomposition: at most |P | processes

at most |P |2 locations,

at most |T | × |P | edges (exactly
∑
t∈T |{i | t ∈ Σi}| edges).

Timing information:

at most |P | clocks,∑
t∈T |{i | t ∈ Σi}| guards,∑
t∈T |{i | t ∈ Σi}| clock comparisons in the invariants (Inv(t) can be

attached to one place).

24/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Know thy neighbour!

Given a TPN N , in general, there does not exist any NTA S using the local
syntax (clocks and current locations are not shared) such that N and S have the
same distributed timed language.

p0x1 ≤ ∞

p1Inv(p1)

p4

p2x2 ≤ 2

p3Inv(p3)

a
x1 ≥ 0

{x1}

x1 ≥ 2
d
{x1}

x1 ≥ 0
b
{x1}

x2 ≥ 1
c
{x2}

x2 ≥ 0
b

{x2}

Inv(p1) ≡ (x1 ≤ 2) ∧ (¬p3 ∨ (x1 ≤ 0 ∨ x2 ≤ 0))
Inv(p3) ≡ (¬p1 ∨ (x1 ≤ 0 ∨ x2 ≤ 0))

25/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Know thy neighbour!

Given a TPN N , in general, there does not exist any NTA S using the local
syntax (clocks and current locations are not shared) such that N and S have the
same distributed timed language.

Lemma

Let S be a network of n timed automata that do not read the state of the other
automata, then for any W1, . . . ,Wn admissible timed traces without
synchronization and stopping at a same date θ, W1|π1

‖ · · · ‖ Wn|πn
is also an

admissible timed trace stopping at θ.

Proof

(d, 2)

(a, 0)

(c, 2)

π1 π2

W

(c, 1)

π1 π2

W ′

(d, 2)

(a, 0)
(c, 1)

π1 π2

W|π1
‖ W ′

|π2

25/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Know thy neighbour!

Given a TPN N , in general, there does not exist any NTA S using the local
syntax (clocks and current locations are not shared) such that N and S have the
same distributed timed language.

Counterexample: W|π1
‖ W ′|π2

should be admissible.

•p0

a[0,∞[

p1

d[2, 2]

p4

b[0, 0]

•p2

c[1, 2]

p3

(d, 2)

(a, 0)

(c, 2)

π1 π2

W

(c, 1)

π1 π2

W ′

(d, 2)

(a, 0)
(c, 1)

π1 π2

W|π1
‖ W ′

|π2

25/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Reverse translation: from NTA to TPN

Sequential semantics: [Bérard, Cassez, Haddad, Lime, Roux, 06] When are Timed
Automata weakly timed bisimilar to Time Petri Nets?
But we want to preserve the distributed semantics.

1 Translation of each TA in a finite “time S-net” with one token

But finite time S-nets with 1 token are strictly less expressive than TA with 1
clock

2 Considering the translation into more general nets,

3 Composing the nets.

x ≤ 2 x ≤ 4

6≡ time S-net with one token
x ≥ 1, a x ≥ 4, b

26/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Reverse translation: from NTA to TPN

Sequential semantics: [Bérard, Cassez, Haddad, Lime, Roux, 06] When are Timed
Automata weakly timed bisimilar to Time Petri Nets?
But we want to preserve the distributed semantics.

1 Translation of each TA in a finite “time S-net” with one token

But finite time S-nets with 1 token are strictly less expressive than TA with 1
clock

2 Considering the translation into more general nets,

3 Composing the nets.

x ≤ 2 x ≤ 4

6≡ time S-net with one token
x ≥ 1, a x ≥ 4, b

26/28

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Reverse translation: from NTA to TPN

Sequential semantics: [Bérard, Cassez, Haddad, Lime, Roux, 06] When are Timed
Automata weakly timed bisimilar to Time Petri Nets?
But we want to preserve the distributed semantics.

1 Translation of each TA in a finite “time S-net” with one token

But finite time S-nets with 1 token are strictly less expressive than TA with 1
clock

2 Considering the translation into more general nets,

3 Composing the nets.

x ≤ 2 x ≤ 4

6≡ time S-net with one token
x ≥ 1, a x ≥ 4, b

26/28

1 Introduction
Motivation
Timed and concurrent models

2 Partial order semantics
Timed traces
Distributed timed language

3 Decomposing a PN in processes
S-invariants
Decomposition

4 Translation from TPN to NTA
Adding clocks
Know thy neighbour!

5 Conclusion

Introduction Partial order semantics Decomposing a PN in processes Translation from TPN to NTA Conclusion

Conclusion

Summary

Timed trace and distributed timed language: description of a distributed
semantics where concurrency is not erased

Translation from a TPN to a NTA based on the decomposition in processes

Correctness w.r.t. the distributed timed language
Usable in practice (small tests with Uppaal)
Readable and close to the modeled system: processes are preserved

Future work

Identification of TPN with good decompositional properties (no need to share
clocks).

Explore timed concurrency

Definition and properties
Use in verification tools
[Lugiez, Niebert, Zennou, 05] A partial order semantics approach to the clock
explosion problem of timed automata
[Niebert, Qu, 06] invariants

28/28

	Introduction
	Motivation
	Timed and concurrent models

	Partial order semantics
	Timed traces
	Distributed timed language

	Decomposing a PN in processes
	S-invariants
	Decomposition

	Translation from TPN to NTA
	Adding clocks
	Know thy neighbour!

	Conclusion

