Compositional analysis of modular systems using hierarchical state space abstraction

Yves-Stan Le Cornec advisor : Franck Pommereau

MeFoSyLoMa IBISC, University of Evry 19 april 2013

Motivation

- Model checking
 - µ-calculus formula
 - modular Petri net
 - fused transitions
 - finite semantics of the modules
- Exploit modularity to alleviate the state space explosion problem
 - incremental approach
 - try to conclude as soon as possible
 - formula-dependent hierarchical reductions

$\mathsf{Syntax:} \quad \varphi \quad ``= \quad B \quad | \ \neg \varphi \quad | \ \varphi_1 \lor \varphi_2 \quad | \ \langle \alpha \rangle \varphi \quad | \ \mu X.\varphi \mid X$

Syntax: φ ::= **B** | $\neg \varphi$ | $\varphi_1 \lor \varphi_2$ | $\langle \alpha \rangle \varphi$ | $\mu X \cdot \varphi \mid X$

Syntax: $\varphi ::= B \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \langle \alpha \rangle \varphi \mid \mu X. \varphi \mid X$

Syntax: $\varphi ::= B \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \langle \alpha \rangle \varphi \mid \mu X.\varphi \mid X$

$$\varphi = (c \wedge d) \vee (e)$$

Syntax: $\varphi ::= B \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid (\alpha)\varphi \mid \mu X.\varphi \mid X$

$$\varphi = \langle f_1, I_3, I_5 \rangle (\boldsymbol{c} \wedge \boldsymbol{d})$$

Syntax: $\varphi ::= B \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \langle \alpha \rangle \varphi \mid \mu X. \varphi \mid X$

Syntax: $\varphi ::= B \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \langle \alpha \rangle \varphi \mid \mu X. \varphi \mid X$

 $\varphi = \mu X.\psi$ where $\psi = ((c \land d) \lor \langle \rangle X)$

Syntax: $\varphi ::= B \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \langle \alpha \rangle \varphi \mid \mu X. \varphi \mid X$

 $\psi(\psi(\emptyset))$

Syntax: $\varphi ::= B \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \langle \alpha \rangle \varphi \mid \mu X. \varphi \mid X$

 $\varphi = \mu X.\psi$ where $\psi = ((c \land d) \lor \langle \rangle X)$

 $\psi(\psi(\psi(\emptyset)))$

Syntax: $\varphi ::= B \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \langle \alpha \rangle \varphi \mid \mu X. \varphi \mid X$

 $\varphi = \mu X.\psi$ where $\psi = ((c \land d) \lor \langle \rangle X)$

 $\psi(\psi(\psi(\psi(\varnothing))))$

Modular Petri nets

Global system: collection of Petri nets with fused transitions.

Theorem (Semantics consistency)

[Christensen and Petrucci, 1992]

 $\llbracket N_1 \oplus \cdots \oplus N_n \rrbracket \quad \simeq \quad \llbracket N_1 \rrbracket \otimes \cdots \otimes \llbracket N_n \rrbracket$

Modular Petri nets

Application: semantics of net (N_1, \ldots, N_5) computed equivalently as :

- $\blacktriangleright \llbracket N_1 \oplus \cdots \oplus N_5 \rrbracket$
- $\bullet \llbracket N_1 \oplus N_2 \rrbracket \otimes \llbracket N_3 \oplus N_4 \rrbracket \otimes \llbracket N_5 \rrbracket$

۰۰۰ ا

• Local verification of the formula : $\varphi \stackrel{?}{\dashv} S_i$

- Local verification of the formula : $\varphi \stackrel{?}{\dashv} S_i$
- Formula dependent abstraction
 - A reduction operation : $[S]_{\varphi}$
 - An equivalence relation on the transition systems: \sim^{φ}

- Local verification of the formula : $\varphi \stackrel{?}{\dashv} S_i$
- Formula dependent abstraction
 - A reduction operation : $[S]_{\varphi}$
 - An equivalence relation on the transition systems: \sim^{φ}

Theorem (~ $^{\varphi}$ preserves the truth value of φ)

1.
$$[S]_{\varphi} \sim^{\varphi} S$$

2. If $S_i \sim^{\varphi} S'_i$ for all i then $S_1 \otimes \cdots \otimes S_n \sim^{\varphi} S'_1 \otimes \cdots \otimes S'_n$
3. If $S_1 \sim^{\varphi} S_2$ then $\varphi \stackrel{?}{\dashv} S_1$ iff $\varphi \stackrel{?}{\dashv} S_2$ and $S_1 \vDash \varphi$ iff $S_2 \vDash \varphi$

- Local verification of the formula : $\varphi \stackrel{?}{\dashv} S_i$
- Formula dependent abstraction
 - A reduction operation : $[S]_{\varphi}$
 - An equivalence relation on the transition systems: \sim^{φ}

Theorem (~ φ preserves the truth value of φ)

1.
$$[S]_{\varphi} \sim^{\varphi} S$$

2. If $S_i \sim^{\varphi} S'_i$ for all i then $S_1 \otimes \cdots \otimes S_n \sim^{\varphi} S'_1 \otimes \cdots \otimes S'_n$
3. If $S_1 \sim^{\varphi} S_2$ then $\varphi \stackrel{?}{\dashv} S_1$ iff $\varphi \stackrel{?}{\dashv} S_2$ and $S_1 \vDash \varphi$ iff $S_2 \vDash \varphi$

Application: with $||N_n||_{\varphi} \stackrel{\text{df}}{=} [[N_n]]_{\varphi}$ we have:

 $\llbracket N_1 \oplus \cdots \oplus N_n \rrbracket \simeq \llbracket N_1 \rrbracket \otimes \cdots \otimes \llbracket N_n \rrbracket \sim \nabla^{\varphi} \llbracket N_1 \rfloor_{\varphi} \otimes \cdots \otimes \llbracket N_n \rfloor_{\varphi}$

• Goal : $\forall env, ((x, env) \vDash \varphi \Leftrightarrow (y, env) \vDash \varphi)$

- Goal : $\forall env, ((x, env) \vDash \varphi \Leftrightarrow (y, env) \vDash \varphi)$
- ▶ Goal : $\forall env, ((x, env) \vDash \varphi \Rightarrow (y, env) \vDash \varphi)$

- Goal : $\forall env, ((x, env) \vDash \varphi \Leftrightarrow (y, env) \vDash \varphi)$
- Goal : $\forall env, ((x, env) \vDash \varphi \Rightarrow (y, env) \vDash \varphi)$
- ► Goal : $\forall env, ((x, env) \vDash \psi \Rightarrow (y, env) \vDash \varphi)$

- Goal : $\forall env, ((x, env) \vDash \varphi \Leftrightarrow (y, env) \vDash \varphi)$
- Goal : $\forall env, ((x, env) \vDash \varphi \Rightarrow (y, env) \vDash \varphi)$
- Goal : $\forall env, ((x, env) \vDash \psi \Rightarrow (y, env) \vDash \varphi)$
- ▶ Goal : If $env \models$? Then $(x, env) \models \psi \Rightarrow (y, env) \models \varphi$

- Goal : $\forall env, ((x, env) \vDash \varphi \Leftrightarrow (y, env) \vDash \varphi)$
- Goal : $\forall env, ((x, env) \vDash \varphi \Rightarrow (y, env) \vDash \varphi)$
- Goal : $\forall env, ((x, env) \vDash \psi \Rightarrow (y, env) \vDash \varphi)$
- Goal : If $env \vDash$? Then $(x, env) \vDash \psi \Rightarrow (y, env) \vDash \varphi$
- ▶ Goal : If $env \models \langle\!\langle \psi, \varphi \rangle\!\rangle(x, y)$ Then $(x, env) \models \psi \Rightarrow (y, env) \models \varphi$
- We build $\langle\!\langle \psi, \varphi \rangle\!\rangle_{\mathcal{S}} : Q^2 \to \mathbb{B}(E_X)$ where
- Q states of module S
- Ex state variables in ψ and φ external to S

Inductive construction of $\langle\!\langle \psi, \varphi \rangle\!\rangle$

Base case

$$\langle\!\langle B_1, B_2 \rangle\!\rangle (x, y) \stackrel{\text{df}}{=} B_1 @x \Rightarrow B_2 @y = \neg B_1 @x \lor B_2 @y$$

Example: $\langle\!\langle B, B \rangle\!\rangle$

- where $B = (a \lor v) \land (b \lor w)$
- a and b are local variables
- v and w are external variables

we have B@1 = w and B@2 = v so :

$$\langle\!\langle B, B \rangle\!\rangle = \begin{cases} (1,1); (2,2) & \mapsto \top \\ (1,2) & \mapsto \neg w \lor v \\ (2,1) & \mapsto \neg v \lor w \end{cases}$$

Other rules

Disjunction rule

$$\langle\!\langle \psi, \varphi_1 \lor \varphi_2 \rangle\!\rangle(x, y) = \langle\!\langle \psi, \varphi_1 \rangle\!\rangle(x, y) \lor \langle\!\langle \psi, \varphi_2 \rangle\!\rangle(x, y)$$

Local next rule

$$\langle\!\langle \psi, \langle I \rangle \varphi \rangle\!\rangle(x, y) \stackrel{\text{df}}{=} (\bigvee_{y \stackrel{i}{\to} y'} \langle\!\langle \psi, \varphi \rangle\!\rangle(x, y')) \lor \langle\!\langle \psi, \bot \rangle\!\rangle(x, y)$$

Synchronized next rule

$$\langle\!\langle \langle s \rangle \psi, \langle s \rangle \varphi \rangle\!\rangle (x, y) = \begin{cases} \top & \text{iff } \bigwedge_{x \stackrel{s}{\to} x'} \bigvee_{y \stackrel{s}{\to} y'} \langle\!\langle \psi, \varphi \rangle\!\rangle (x', y') = \top \\ \bot & \text{otherwise} \end{cases}$$

Fixed point rule

$$\langle\!\langle \mu X\psi,\varphi\rangle\!\rangle = \langle\!\langle \psi(\mu X\psi),\varphi\rangle\!\rangle$$

Dependency graph : what needs to be computed

- $\Phi = \mu X \cdot \langle I \rangle X \vee B$
- I is a local action
- a and b are local variables
- v and w are external variables

Theorem

The fixed-point computations converge

- $\Phi = \mu X.\langle \rangle X \vee B$
- $B = (a \wedge v) \vee (b \wedge w)$

- $\Phi = \mu X \cdot \langle X \lor B$
- $B = (a \wedge v) \vee (b \wedge w)$
- if $v = \top$ then $1 7 \models B$ so $1 7 \models \Phi$

- $\Phi = \mu X.\langle \rangle X \vee B$
- $\bullet \ B = (a \wedge v) \vee (b \wedge w)$
- if $v = \top$ then $1 7 \models B$ so $1 7 \models \Phi$
- if $w = \top$ then $8 \models B$ so $1 7 \models \Phi$

- $\Phi = \mu X.\langle \rangle X \vee B$
- $\bullet \ B = (a \wedge v) \vee (b \wedge w)$
- if $v = \top$ then $1 7 \models B$ so $1 7 \models \Phi$
- if $w = \top$ then $8 \models B$ so $1 7 \models \Phi$
- if $w = \bot$ and $v = \bot$ then $1 7 \neq \Phi$

$$a, \neg b, c \quad 1$$

$$J \quad J \quad J$$

$$a, \neg b, c \quad 1$$

$$J \quad J \quad J \quad J$$

$$a, \neg b, d \quad J$$

$$a, \neg b, e \quad J$$

$$a, \neg b, f \quad J$$

- $\Phi = \mu X.\langle \rangle X \vee B$
- $B = (a \wedge v) \vee (b \wedge w)$
- if $v = \top$ then $1 7 \models B$ so $1 7 \models \Phi$
- if $w = \top$ then $8 \models B$ so $1 7 \models \Phi$
- if $w = \bot$ and $v = \bot$ then $1 7 \neq \Phi$

reduced module $||S||_{\Phi}$

Conclusion

- A framework to incrementally analyze modular system using formula dependent reductions
- Next step: good/optimal hierarchical decomposition
 ⇒ stop the analysis as soon as possible
- Implementation
- Case studies