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Existing explicit emptiness checks

NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS,

SCC-based: compute SCCs of the automaton and maintains
acceptance sets for each SCCs using one DFS.

NDFS-based SCC-based

On-the-Fly X X

Bit state hashing all states but DFS only dead SCCs

State space caching all states but DFS only dead SCCs

Max memory req. for BA 2 bits per state 1 int per state

Generalization difficult trivial

Earlier CE detection – X
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This Talk!

Is there a best explicit SCC computation algorithm?

How to transform SCCs computation algorithms into generalized
emptiness checks?

What is the cost of adding the emptiness check to an SCC
computation algorithm?
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Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]
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Let’s benchmark!

Models from the BEEM benchmark

448 empty products where the emptiness check takes at least 10
seconds on an Intel 64-bit Xeon @ 2.00 GHz

412 non-empty products

Union-Find uses common optimizations:
I Link by Rank
I Immediate Parent Check
I Memory Smart
I Path Compression
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Comparisons of emptiness checks

The three algorithms are comparable.

Dijkstra-based emptiness check is the best memory efficient and can
benefit from a compressed stack!

Tarjan-based is the faster when bit state hashing and state space
caching are not used!
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Conclusion

Comparision of generalized emptiness checks for the automata
theoretic approach to model checking;

Improve Dijkstra SCC computation algorithm;

First emptiness check based on a Union-Find data structure;

Memory comparison.
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root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]
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Future work...

Integrate Nuutila’s optimisation in all algorithms.

Compressed stack for Tarjan’s algorithm.

Build a Tarjan-based algorithm with a Union-Find data
structure.

Explore parallel set-ups for these algorithms.

Questions?
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Tarjan – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13

s12s12 s13s12 s13

partial root

Backedge

Lowlink stack
1 1 5 6 7 7 10 11
∅ ∅ ∅ ∅ ∅ ∅ ∅

Compressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X
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LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13

s12

s12 s13s12 s13

partial root

Backedge

Lowlink stack
1 1 5 6 7 7 10 9
∅ ∅ ∅ ∅ ∅ ∅ ∅

Compressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X
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Dijkstra – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13s12

s12 s13

s12 s13

partial root

Backedge

Root stack
s1 s5 s8 s9 s12 s13
∅ ∅ ∅ ∅ ∅

Compressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X
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s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

Root stack
s1 s5 s8 s9
∅ ∅ ∅

Compressed
Root Stack

2 4 8
∅ ∅
× X ×
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