
Three SCC-based Emptiness Checks for
Generalized Büchi Automata

LPAR’19

E. Renault, A. Duret-Lutz, F. Kordon, D. Poitrenaud

Thursday, December 19th

E. Renault LPAR - 2013 Thursday, December 19th 1 / 14



Transition-based Generalized Büchi Automata

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12 s13

Runs are accepting iff they visit each acceptance set infinitely often.

An emptiness check looks for accepting runs.

E. Renault LPAR - 2013 Thursday, December 19th 2 / 14



Transition-based Generalized Büchi Automata

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12 s13

Runs are accepting iff they visit each acceptance set infinitely often.

An emptiness check looks for accepting runs.

E. Renault LPAR - 2013 Thursday, December 19th 2 / 14



Transition-based Generalized Büchi Automata

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12 s13

Runs are accepting iff they visit each acceptance set infinitely often.

An emptiness check looks for accepting runs.

E. Renault LPAR - 2013 Thursday, December 19th 2 / 14



Existing explicit emptiness checks

NDFS-based: look for accepting runs of the automaton using
a second interleaved DFS,

SCC-based: compute SCCs of the automaton and maintains
acceptance sets for each SCCs using one DFS.

NDFS-based SCC-based

On-the-Fly X X

Bit state hashing all states but DFS only dead SCCs

State space caching all states but DFS only dead SCCs

Max memory req. for BA 2 bits per state 1 int per state

Generalization difficult trivial

Earlier CE detection – X

E. Renault LPAR - 2013 Thursday, December 19th 3 / 14



This Talk!

Is there a best explicit SCC computation algorithm?

How to transform SCCs computation algorithms into generalized
emptiness checks?

What is the cost of adding the emptiness check to an SCC
computation algorithm?

E. Renault LPAR - 2013 Thursday, December 19th 4 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12 s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13

s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Terminology

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13

s12s12 s13s12 s13

partial root

Backedge

Compressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 5 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 6 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 6 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 6 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 6 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 6 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 6 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction; Geldenhuys and

Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 7 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 8 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 8 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 8 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 8 / 14



Gabow – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13s12s12 s13

s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

UF

DEAD s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

Root stack
s1 s5 s8 s9 s12 s13
∅ ∅ ∅ ∅ ∅

E. Renault LPAR - 2013 Thursday, December 19th 9 / 14



Gabow – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

UF

DEAD s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

Root stack
s1 s5 s8 s9 s12 s13
∅ ∅ ∅ ∅ ∅

E. Renault LPAR - 2013 Thursday, December 19th 9 / 14



Gabow – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

UF

DEAD s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

Root stack
s1 s5 s8 s9
∅ ∅ ∅

E. Renault LPAR - 2013 Thursday, December 19th 9 / 14



Let’s benchmark!

Models from the BEEM benchmark

448 empty products where the emptiness check takes at least 10
seconds on an Intel 64-bit Xeon @ 2.00 GHz

412 non-empty products

Union-Find uses common optimizations:
I Link by Rank
I Immediate Parent Check
I Memory Smart
I Path Compression

E. Renault LPAR - 2013 Thursday, December 19th 10 / 14



Comparisons of emptiness checks

The three algorithms are comparable.

Dijkstra-based emptiness check is the best memory efficient and can
benefit from a compressed stack!

Tarjan-based is the faster when bit state hashing and state space
caching are not used!

E. Renault LPAR - 2013 Thursday, December 19th 11 / 14



Conclusion

Comparision of generalized emptiness checks for the automata
theoretic approach to model checking;

Improve Dijkstra SCC computation algorithm;

First emptiness check based on a Union-Find data structure;

Memory comparison.

E. Renault LPAR - 2013 Thursday, December 19th 12 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 13 / 14



Tarjan [1972]

Associates an identifier (lowlink) to each state on the DFS
stack;
These lowlinks are stored in a lowlink stack
Every new state pushed on the DFS stack has for lowlink :
LIVE stack size() + 1;
For every backtrack, the lowlink at the top of the lowlink
stack will be affected to a smaller or equal value;
If a state that has a lowlink equal to its LIVE number it’s a
root: when this state will be popped, all states with a greater
LIVE number will be removed from LIVE stack.

Geldenhuys and Valmari [2004]

Büchi Automaton;
One lowlink per LIVE state;
An extra stack for DFS position of accepting states;

LPAR’19

Generalized Büchi Automaton;
One lowlink per state on the DFS stack;
A set of acceptance sets per element in the lowlink stack ;

Dijkstra [1973]

Associates an identifier (DFS Position) to each state on the
DFS stack;
These DFS Position are stored in a root stack
When a backedge is found, the root stack is updated until
the top of this stack is lesser or equal to the DFS Position of
the destination;
If a state that has a DFS position equal to the top of the
root stack it’s a root: when this state will be popped, all
states with a greater LIVE number will be removed from
LIVE stack.

Couvreur [1999]

Generalized Büchi Automaton;
Rediscovers Dijkstra [1973] starting from Tarjan [1972];
Hybrid algorithm between SCC-based and NDFS-based;
An acceptance set per element in the root stack ;

Couvreur et al. [2005]

Restores the SCC-based aspect of the algorithm by storing
states in the same SCC;
Two new heuristics using characteristic of Dijkstra’s
algorithm;
Counterexamples extraction;

Geldenhuys and
Valmari [2005]

Combines Geldenhuys and Valmari [2004] and Couvreur [1999];
More efficient data strucutre;
Counterexamples extraction;

Cheriyan
and

Mehlhorn
[1996]

Optimisation for dense explicit graph;
Theoretical complexity analysis;

Gabow [2000]

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Alur et al. [2005]

Propose an emptiness check similar to
Couvreur et al. [2005] for Büchi Automaton;

Hansen and
Geldenhuys [2008]

Propose an emptiness check similar to Alur
et al. [2005] for Büchi Automaton;
Extraction of small counterexamples;

Gaiser and
Schwoon [2009]

Propose an emptiness check similar to
Couvreur et al. [2005] for Generalized Büchi
Automaton;

LPAR’19

Mixes all ideas to propose a generalized
emptiness check compatible with Bit State
Hashing and State Space Caching;
Compressed root stack ;

Rediscovers Cheriyan and Mehlhorn [1996]
starting from Tarjan [1972];

Suggests the use of a Union-Find to
perform the SCC computation;

LPAR’19

Use a Union-Find data strucure to avoid the cost
of marking dead an SCC;
Compatible root stack compression;

Nuutila and Soisalon-Soininen [1994]
Pearce
[2005]

E. Renault LPAR - 2013 Thursday, December 19th 13 / 14



Future work...

Integrate Nuutila’s optimisation in all algorithms.

Compressed stack for Tarjan’s algorithm.

Build a Tarjan-based algorithm with a Union-Find data
structure.

Explore parallel set-ups for these algorithms.

Questions?

E. Renault LPAR - 2013 Thursday, December 19th 14 / 14



Future work...

Integrate Nuutila’s optimisation in all algorithms.

Compressed stack for Tarjan’s algorithm.

Build a Tarjan-based algorithm with a Union-Find data
structure.

Explore parallel set-ups for these algorithms.

Questions?

E. Renault LPAR - 2013 Thursday, December 19th 14 / 14



Bibliography I

Alur, R., Chaudhuri, S., Etessami, K., and Madhusudan, P. (2005). On-the-fly reachability and
cycle detection for recursive state machines. In Halbwachs, N. and Zuck, L., editors,
Proceedings of the 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’05), volume 3440 of Lecture Notes in
Computer Science, pages 61–76. Springer Berlin Heidelberg.

Cheriyan, J. and Mehlhorn, K. (1996). Algorithms for dense graphs and networks on the
random access computer. Algorithmica, 15(6):521–549.

Couvreur, J.-M. (1999). On-the-fly verification of temporal logic. In Wing, J. M., Woodcock,
J., and Davies, J., editors, Proceedings of the World Congress on Formal Methods in the
Development of Computing Systems (FM’99), volume 1708 of Lecture Notes in Computer
Science, pages 253–271, Toulouse, France. Springer-Verlag.

Couvreur, J.-M., Duret-Lutz, A., and Poitrenaud, D. (2005). On-the-fly emptiness checks for
generalized Büchi automata. In Godefroid, P., editor, Proceedings of the 12th International
SPIN Workshop on Model Checking of Software (SPIN’05), volume 3639 of Lecture Notes
in Computer Science, pages 143–158. Springer.

Dijkstra, E. W. (1973). EWD 376: Finding the maximum strong components in a directed
graph. http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF.

Gabow, H. N. (2000). Path-based depth-first search for strong and biconnected components.
Information Processing Letters, 74(3-4):107–114.

E. Renault LPAR - 2013 Thursday, December 19th 15 / 14

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF


Bibliography II
Gaiser, A. and Schwoon, S. (2009). Comparison of algorithms for checking emptiness on Büchi

automata. In Hlinený, P., Matyás, V., and Vojnar, T., editors, Procedings of Annual Doctoral
Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS’09),
volume 13 of OASICS. Schloss Dagstuhl, Leibniz-Zentrum fuer Informatik, Germany.

Geldenhuys, J. and Valmari, A. (2004). Tarjan’s algorithm makes on-the-fly LTL verification
more efficient. In Jensen, K. and Podelski, A., editors, Proceedings of the 10th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’04), volume 2988 of Lecture Notes in Computer Science, pages 205–219. Springer.

Geldenhuys, J. and Valmari, A. (2005). More efficient on-the-fly LTL verification with Tarjan’s
algorithm. Theoretical Computer Science, 345(1):60–82.

Hansen, H. and Geldenhuys, J. (2008). Cheap and small counterexamples. In Cerone, A. and
Gruner, S., editors, Proceedings of the 6th IEEE International Conference on Software
Engineering and Formal Methods (SEFM’08), pages 53–62. IEEE Computer Society.

Nuutila, E. and Soisalon-Soininen, E. (1994). On finding the strongly connected components in
a directed graph. Information Processing Letters, 49(1):9–14.

Pearce, D. J. (2005). An improved algorithm for finding the strongly connected components of
a directed graph.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160.

E. Renault LPAR - 2013 Thursday, December 19th 16 / 14



Tarjan – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9 s12 s13

s12s12 s13s12 s13

partial root

Backedge

Lowlink stack
1 1 5 6 7 7 10 11
∅ ∅ ∅ ∅ ∅ ∅ ∅

Compressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 17 / 14



Tarjan – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13

s12

s12 s13s12 s13

partial root

Backedge

Lowlink stack
1 1 5 6 7 7 10 9
∅ ∅ ∅ ∅ ∅ ∅ ∅

Compressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 18 / 14



Dijkstra – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13s12

s12 s13

s12 s13

partial root

Backedge

Root stack
s1 s5 s8 s9 s12 s13
∅ ∅ ∅ ∅ ∅

Compressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 19 / 14



Dijkstra – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13s12

s12 s13

s12 s13

partial root

Backedge

Root stack
s1 s5 s8 s9 s12 s13
∅ ∅ ∅ ∅ ∅

Compressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

E. Renault LPAR - 2013 Thursday, December 19th 19 / 14



Dijkstra – Back to the example

s1 s2

s3s4

s5

s6

s8

s7

s9 s10

s11

s12

s13

s13

Current state

DFS stack

s1 s2

s3s4

s5 s8 s9 s10

s11

s12 s13

LIVE state

s6 s7

DEAD state

1 2

34

5 6 7 8

9

10 11

x LIVE number

LIVE stack s1 s2 s3 s4 s5 s8 s9 s10 s11 s12 s13
1 2 3 4 5 6 7 8 9 10 11

s1 s5 s8 s9

s12 s13s12s12 s13s12 s13

partial root

BackedgeCompressed
Root Stack

2 4 6 8
∅ ∅ ∅
× X × X

Root stack
s1 s5 s8 s9
∅ ∅ ∅

Compressed
Root Stack

2 4 8
∅ ∅
× X ×

E. Renault LPAR - 2013 Thursday, December 19th 19 / 14


	Appendix

