
PN Standardisation: A Survey

L. Hillah1, F. Kordon1, L. Petrucci2, and N. Trèves3

1 Université P. & M. Curie - Paris 6, CNRS UMR 7606 - LIP6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France

Fabrice.Kordon@lip6.fr, Lom-Messan.Hillah@lip6.fr
2 LIPN, CNRS UMR 7030, Université Paris XIII

99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, France

Laure.Petrucci@lipn.univ-paris13.fr
3 Cedric, CNAM

292, rue St Martin
F-75141 Paris Cedex 03, France

treves@cnam.fr

Abstract. Petri Nets formalism requires standardisation to facilitate
the work of researchers in this field and to enable the data exchange
between different Petri Nets tools through a common format. Following
this, a three-part International Standard (ISO/IEC 15909) has been de-
veloped. Part 1 is devoted to terms and definitions for Place/Transition
Nets and High-Level Petri Nets. It is now completed (published as a stan-
dard) but will include an addendum on Symmetric Nets. Part 2 aims at
providing a transfer format for High-level Petri Nets, called PNML, based
on XML. Work on part 3 which deals with extensions has not started yet.
In this paper the first two parts of the standard are presented. Then, to
support part 2, an implementation of PNML, through an API framework
to be integrated into Petri Net tools, is proposed. It allows for the trans-
lation of any Petri Net, designed by a given tool in a dedicated format,
into PNML.

1 The Challenge of PN Standardisation

Petri Nets [4,8,26,28] are a mathematically defined formalism and may thus
be used to provide unambiguous specifications and descriptions of applications.
They are especially dedicated to specify and design discrete event systems and
this technique is particularly suited to parallel and distributed systems devel-
opment as it supports concurrency. The technique allows for specification of
systems at a level which is independent of the implementation choices (i.e., by
software, hardware — electronic and/or mechanical — or humans, or a combina-
tion of these) and has been widely used to describe telecommunication systems,
protocols, microprocessor architectures,... since their invention in 1962. They
also constitute an executable technique, allowing specification prototypes to be
developed to test ideas at the earliest and cheapest opportunity. Specifications
written in the technique may be subject to analysis methods to prove proper-
ties about the specifications, before implementation commences, thus saving on

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 307–322, 2006.
c© IFIP International Federation for Information Processing 2006

308 L. Hillah et al.

testing and maintenance time and providing a high confidence in the quality
of the product to be developed. However these analysis methods are efficient
only if they are supported by tools: for example, CPN-AMI [25], GreatSPN [9],
PEP [13], CPNtool [22], automate the analysis process.

A problem with Petri nets is the explosion of the huge number of elements
when described in their graphical form, for specification of complex systems.
High-level Petri Nets [17] were developed to overcome this problem by intro-
ducing higher-level concepts, such as the use of complex structured data carried
by tokens, and using algebraic expressions to annotate net elements. The use of
high-level concepts within this Petri net framework is analogous to the use of
those in high-level programming languages (as opposed to assembly languages).
In the Petri nets community the term High-level net is generally used to refer
to nets using such concepts.

Two of the early forms of high-level nets are Predicate-Transition Nets [12]
and Coloured Petri Nets [16], first introduced in 1979 and further developed
during the 1980s. Most of nowadays high-level nets build on these. They also
use some of the notions developed for Algebraic Petri Nets [29], first introduced
in the mid-1980s.

Furthermore, there are many different variants of Petri nets. Extensions of
the technique, including time, stochastic features, capacities, and hierarchies as
well as special Petri net types exist in the literature (see [2,8]...).

Standardisation of the technique has been seen as an opportunity to obtain
a better organisation of the work in the Petri Net community. It has several
issues:

– to enable the stakeholder — researchers, as well as engineers using Petri nets
— to use the same terminology;

– to develop future extensions on a stable common basis, e.g., P/T nets or
High-level nets;

– to provide a reference implementation that will facilitate the data exchange
between different Petri nets tools through a common format.

The purpose of this paper is to present the PN standard, referenced under
ISO/IEC 15909, as well as related work. First, the standard, which is organised
in three different parts, is described. Then the current status of the work is given,
followed by an implementation which is expected to prove very useful for the
PN community.

2 The Structure of the Standard

The PN standard has been designed into three independent parts in order to
enable flexibility of the standardisation process.

Part 1 [15] provides the mathematical definitions of High-level Petri Nets,
called the semantic model, the graphical form of the technique, known as High-
level Petri Net Graphs (HLPNGs), and its mapping to the semantic model. Part
1 also introduces some common notational conventions for HLPNGs.

PN Standardisation: A Survey 309

Part 2 [18] [19] of this international standard defines a transfer format in
order to support the exchange of High-level Petri Nets among different tools.
This format is called the Petri Net Markup Language (PNML). Since there are
many different versions of Petri nets in addition to High-level Petri Nets, this
standard defines the core concepts of all Petri Net types along with an XML
syntax, which can be used for exchanging any kind of Petri Net. Based on this
PNML core model, part 2 also aims at defining the transfer syntax for the two
versions of Petri Nets that are already defined in part 1 of this International
Standard, Place/Transition Nets and High-level Petri Nets.

An addendum to Part 1 [20] of this standard introduces Symmetric Nets,
formerly known as Well-Formed nets [6], as a subclass of High-level Petri Nets,
which uses a restricted set of algebraic operators and allows for good analysis
possibilities.

Part 3 is devoted to the standardisation of Petri nets extensions, including
hierarchies, time and stochastic features. These extensions will be built upon
extensions of the core model. They require a stable version of the core model to
be available. This is not the current situation at this stage. Hence, only parts 1
and 2 are presented below.

The standardisation process is quite long and relatively complex. A standard
must be built in order to be stable enough to be used by the people involved. It
is developed within a schedule which should not exceed three years and is subject
to revision every five years. More information on the rules can be found at [10].

Part 1 obtained the status of International Standard in december 2004. The
addendum has been proposed by France and has currently the level of Working
Draft (stage 20.60 in the ISO nomenclature).

At this level, the possibility is offered to the community to contribute. When
the standard has reached the step forward, the Committee Draft level, it gains
restricted aceess, with rights reserved to ISO experts only.

Part 2 has today the same status as the addendum.
Work on part 3 has not started yet, as it requires a stable version of the PNML

core model to be available. As a consequence, the work on this part will start as
soon as PNML is standardised.

2.1 Part 1

The first part of ISO/IEC 15909 was published as an International Standard
(IS) in december 2004. It provides a comprehensive documentation of the ter-
minology, the semantical model and the graphical notations for High-level Petri
nets. It also describes different conformance levels. Finally, a tutorial example
given in annex illustrates the different concepts in the standard.

A glossary introduces the different terms to be used in the Petri net context.
They thus have a precise meaning, which is explained in natural language in the
glossary and further detailled later using mathematical notations. The document
is thus self-contained and avoids any ambiguity.

The semantic model for High-level Petri nets is defined, using precise mathe-
matical notations. All basic elements required to work with High-level Petri nets

310 L. Hillah et al.

are thus introduced: high-level Petri net, marking, enabling of transition modes,
and transition rule.

These mathematically defined concepts are then reintroduced using natural
language and explanations, and related to the graphical notations which are
more commonly used in practice. Hence, the graphics representing the nets are
defined.

This graphical presentation is further formalised as a High-level Petri Net
Graph. It also has a semantics. It can be viewed as a graph oriented perspective
for the high-level Petri net semantic model.

An important issue in standards design is the conformance level. Indeed, other
work or tools can be compliant with the standard as a whole, or just part of
it. This latter case may be sufficient for some particular purposes. Different
conformance levels are thus defined, both for Petri nets and High-level Petri
nets, depending on whether the graphical notation is taken into account.

Extensive mathematical notations are defined as normative in an annex.
Another normative annex defines net classes. Up to now it only comprises
Place/Transitions nets (i.e. Petri nets). Another class definition for Symmet-
ric nets (formerly known as Well-Formed nets) is currently in the process of
being an addendum to part 1 of the standard.

2.2 Part 2

The objective of part 2 is to define an interchange format for Petri nets called
PNML (Petri Net Markup Language) [3]. This interchange format relies on XML
technology.

However, designing an interchange format in the context of this standard is a
difficult task since part 3 will introduce more Petri net types. It is obvious that
an exchange format only suitable for the Petri net types defined in part 1 is not
appropriate. This problem was already outlined in a preliminary study in 2000
that was classifying tools according to the type of supported Petri nets [1].

Moreover, tools usually introduce small variations in Petri nets and create
their own ”dialect”. These variations are mainly due to syntactical aspects, to
some graphical facilities or the way ”actions” are added to the specifications.
Actions are a way to provide help to the system designer, for example by making
available instructions to ease animation of the specification, or add breakpoints.

So, to cope with all these goals, PNML must be able to:

1. allow to introduce smoothly new information associated with new Petri nets
types or, by restriction, allow to hide some information from an inherited
Petri net class.

2. support data aside of the standard, to let tools supporting non-standard
extensions of another tool be able to handle it.

We provide hereafter some details about these two points. The next section
will provide information about the way we handle them appropriately in the
standard by using model engineering techniques implemented using EMF [11]
technology from Eclipse.

PN Standardisation: A Survey 311

Handling a hierarchy of Petri net types. Our first problem is related to the
adjunction of new Petri net types in part 3 of the standard. Let us consider
the small hierarchy expressed in figure 1. P/T nets are the root class since they
only define the basics of Petri nets. Then, they can be extended to Symmetric
nets proposed to be an addendum to part 1 [20]. Since Symmetric nets are a
restriction on the color functions and types allowed in a High-level net, there is
another trivial relation to them.

High-Level nets

Symmetric nets timed nets

P/T nets

Symmetric-timed nets

Fig. 1. Example of Petri net types hierarchy

Let us now consider another set of features in Petri nets: time management.
So, timed nets can be derived from P/T nets by adding the time information
to transitions as in [2]. We can also consider that Symmetric-timed nets inherit
from both timed nets and symmetric nets.

The interchange standard must be flexible enough so as to allow any conver-
sion from one of these representations to any other one without loosing infor-
mation when the tools do handle them. It is crucial that the standard is able to
handle a hierarchy of Petri net types.

High-Level nets

Symmetric nets

timed netsP/T nets

Symmetric-timed nets
inhibitor arcs

test arcs

capacity

Fig. 2. Connections of the Petri net hierarchy to ”local variations”

Handling small variations in Petri net types. Our second problem is to deal with
local variations within a Petri net type such as inhibitor arcs, capacity in places
or any other tool specific information (such as graphical specificities). This is
illustrated in figure 2. We consider there variations such as inhibitor and test
arcs, as well as capacity places. Such variations can be operated for several types
of Petri nets. In our figure, we consider they are all relevant for Symmetric nets
and for P/T nets. Only inhibitor and test arcs are also considered for timed
nets.

312 L. Hillah et al.

Once again, the standard must be able to cope with such variations at various
levels in the Petri net types hierarchy. It is important to normalize as many
variations as possible to have them compatible all over the Petri net hierarchy.

3 Current Implementation of Part 2

The second part of the standard defines a universal transfer format (PNML) for
exchanging Petri net models among Petri net tools. Hence, its primary purpose
is to enable interoperability.

In this section, we first of all highlight how PNML design is being carried
out through the specification work on the standard. Then, we introduce the
incentives for the first implementation of a translation software framework to
back the standard, using model engineering techniques.

3.1 PNML Design

The adopted methodology to design PNML is structured in two main steps:

1. the abstract syntax definition through Petri net types definition with meta-
models;

2. the concrete syntax definition by mapping the abstract syntax onto PNML
schema.

During the first step, main Petri net types are defined using metamodeling tech-
niques. It means that we describe the concepts and rules structuring these types
and their meaning, at a high level of abstraction, independently from any techno-
logical choice for their future implementation. Metamodeling is always purpose-
or business-oriented. It is an activity during which experts of a particular do-
main define the precise semantics of the specific concerns they are interested in.
For example, business process modelers might design a workflow metamodel for
a supply chain, the purpose of which is to discover where synergies could be
gained.

Following our motivations stated in section 2.2, it is important, using such
techniques, to reach a sufficient level of abstraction in PNML design. Indeed, we
should be able, when further developing the standard (Part 3 and maintenance
updates of all parts), to easily refine and extend the primary specifications to
define new types or variants of Petri nets. Therefore, it would be useless to fall
at first in a too low level of specifications, from which no valuable abstraction
could be made to improve the standard.

Three main Petri net types are defined. They are described using the Unified
Modeling Language (UML) class diagrams. They are:

1. The Core model. It is the most fundamental one, depicted by fig. 3. Core
concepts of Petri nets can be found in this basic type: nodes, connectors,
basic labels (e.g., names) and graphical information associated with these
objects. It provides the foundation for further definition of new Petri net
types.

PN Standardisation: A Survey 313

Fig. 3. PNML Core model

2. P/T Systems metamodel. It essentially defines new labels for this type of
Petri nets and relies on the Core model for the central concepts. It is thus
built upon extensions of the Core model.

3. High-level Petri Nets metamodel. Its design is in progress. New labels and
high-level functions are being defined, while relying on the concepts provided
by the Core model and P/T Systems type. As a consequence, it is also built
on extensions of P/T Systems.

An important aspect of this first stage is to state semantic constraints on
the metamodels. This may be achieved using the Object Constraint Language
(OCL) [24]. For instance, in P/T Systems, two connected nodes must not be of
the same kind (i.e., no place-place or transition-transition arc is permitted).

During the second step, PNML schema is defined to match the specifications
carried out by the metamodels. Technical details set apart, each relevant element
of the metamodels is mapped onto a PNML tag.

PNML schema technology is currently RELAX NG-based, which is ”being
developed as an International Standard ISO/IEC 19757-2” [7]. RELAX-NG is
XML schema-like, more flexible and maintenance-friendly for the standard de-
signers than XML schema. However, coming to High-level Petri Nets type, using
this technology to directly define a notation to express high-level labels and
functions does not seem appropriate. Consequently, MathML [31] is being in-
vestigated since it seems to offer the complete set of annotations that could be
used to define high-level labels and functions. We are taking a particular care in

314 L. Hillah et al.

extracting the most accurate subset of MathML features since it allows for great
flexibility and powerful expressivity.

3.2 The First Impact: PNML Framework

From the motivations reported in section 2.2 and emphasized through the design
methodology of PNML described in section 3.1, it is clear that the extensibility
issue for the standard definition is of central importance.

Motivations. In addition, there are three other important issues we should
cope with that drive the implementation of a translation software framework to
support the standard.

Semantic constraints. The Petri Net Markup Language should carry the syntax
of Petri net types specified by the standard. However, capturing the semantics is
also an important issue. Moreover, how to ensure that it is enforced? Semantic
constraints are expressed in the metamodels by means of OCL [24] statements.
But it is important to note that OCL is a specification language, not a program-
ming one. Therefore, it is not meant to be directly executable. It takes its full
meaning when associated with UML annotations.

Compatibility. A second important issue pointed out by PNML specifications
is the compatibility among Petri net types and their variants (cf. discussion in
section 2.2 related to Petri net types hierarchy). Since all variants of the main
types may not be specified by the standard, how to continuously ensure the
interoperability and thus the exchange of Petri net models ?

Another related issue is the compatibility between PNML successive versions.
For example, at least a top-level Page is mandatory in the current version under
development, unlike the previous one.

Automation and integration in Petri nets tools. Since PNML is XML-based, it
is error-prone to manual editing. Therefore, it obviously needs an application to
perform this task.

To ensure that 1) all issues we pointed out are equally dealt with, and 2)
to favor an up-to-date compatibility with the standard along with 3) an easy
integration of its implementation into Petri net tools, we have developed a model-
based translation framework to back the standard.

In the following, we describe this framework, called PNML Framework, and
its use.

4 PNML Framework

To make the standard applicable and provide a reference implementation to Petri
net tools developers, we have developed PNML Framework. Its first release was
published in March 2006 [21].

In this section, we first present this tool and the benefits it offers to tools de-
velopers. Then we describe its features and give an overview of its use. Eventually
we conclude by sketching further work. Open issues are discussed in section 5.

PN Standardisation: A Survey 315

4.1 Goals of PNML Framework

The primary aim is to provide efficient and standard compliant import and ex-
port features of PNML models for Petri net tools. Figure 4 illustrates how PNML
Framework could make the standard interoperability goal achievable. It shows
two tools, A and B, exchanging a Petri net model via the standard transfer
format, using the framework. More details about the operations involved are
given in sections 4.2 and 4.3. PNML Framework is designed using model engi-
neering techniques and, more precisely, EMF (Eclipse Modeling Framework) [5]
technology.

PNML
Model

Tool A Tool B

PNML Framework

FetchFetch

Create Create

LoadSave

Fig. 4. Interoperability using PNML Framework

PNML Framework is a generated set of comprehensive and easy to use tailored
API to import and export Petri net models designed according to the standard
specifications. It is intended to be used as a library, therefore it can be easily
integrated into Petri net tools. Tools developers are considered as the primary
users of PNML Framework.

Thanks to this framework, tools developers would rather focus on their ap-
plications core development instead of coping with how to stay up-to-date and
compliant with the standard. Furthermore, they would not have to deal with
ensuring continuous compatibility with other tools and many Petri net types
and variants.

Moreover, PNML Framework’s flexibility enables them to export and import
appropriate elements of Petri net models, according to their needs. For example,
after having loaded (this term is explained in the following sections) a high-level
net into the framework, one can only fetch the P/T net associated structure.

How is it generated? The API is generated from the standard metamodels using
EMF’s tools.

First, metamodels from the standard are implemented in EMF’s ecore mod-
eling language [5]. In its modeling approach, EMF can be seen as an optimized

316 L. Hillah et al.

implementation of OMG’s Essential Meta Object Facility (EMOF) [23] specifi-
cation but with some differences, due to the experience gained from at least five
years of development and wide use.

After having designed the metamodels using ecore, code is then generated
so as to enable manipulation of model instances of these metamodels. To meet
PNML specific requirements we have extended the Java Emitter Templates [27]
code generation tool integrated in EMF. Consequently, the generated code is
completely tailored to PNML. PNML Framework is thus extensible to include
any Petri net type since its implementation is model-driven and follows the
requirements expressed in the previous sections.

4.2 Features of PNML Framework

The design of PNML Framework is model-driven. It is supported by EMF, which
is a mature model-driven application development framework. It implements
Petri net types metamodels defined in the standard. It handles PNML models
which are instances of these metamodels. From the framework’s point of view
the representation of a PNML model is twofold:

– it is a Petri net model which is an instance of a Petri net type metamodel;
in that case it is handled in memory;

– it is a Petri net model written in PNML (XML-based) syntax in a PNML
document. In that case it is an instance of PNML schema. A PNML docu-
ment can contain one or more PNML models. PNML schema is the RELAX
NG-based XML schema which is mapped onto Petri net types metamodels.
It describes the concrete syntax of PNML models.

As a benefit of using model engineering techniques, PNML Framework offers
two well-defined principal features in the context of PNML models:

– export: PNML models are created as instances of Petri net types metamod-
els and saved in PNML syntax;

– import: PNML models are loaded from PNML documents and created as
instances of Petri net types metamodels in the framework. Their elements
are fetched by the framework’s user (tool developer).

These features are offered through the API which is structured in four sections:

1. Create. This section entitles tools developers to translate user-defined Petri
net models represented in their proprietary format into PNML models as
instances of Petri net types metamodels.

2. Save. It is used to save created PNML models into PNML syntax in PNML
documents. Tools developers are offered a single method in this section to
trigger that operation.

3. Load. PNML models are read by parsing PNML documents and loaded into
the framework by using the Create section. Here again, a single method is
provided in this section to perform the transfer.

4. Fetch. It is used to retrieve elements of PNML models that have been loaded.

PN Standardisation: A Survey 317

In addition to these features, we have implemented rules to enforce semantic
constraints on PNML metamodels that are expressed by means of OCL [24]
statements in the standard. Therefore, users should not have to cope with how
to integrate these constraints since the framework natively implements them.

4.3 Using PNML Framework

Figure 5 describes typical interactions between a tool developer’s application
core program and PNML Framework. In this figure, the four sections of the
API label the interactions. My model represents a Petri net model in a pro-
prietary format. My Program is the tool developer’s core program which drives
the model translation from the proprietary format into PNML syntax. It uses
PNML Framework as a library to perform this task.

My model
 (proprietary

format)

 My model
in

PNML

My Program

PNML Framework

fetchcreate

load

save

parse

build

Fig. 5. Overview of tools developers’ use of PNML Framework

To export a Petri net model represented in a proprietary format or handled
in any application into PNML, a tool developer may first be entitled to parse it.
Then, using the predefined create API, the corresponding PNML model can be
created in the framework. Eventually the model will be saved in PNML syntax.

To import a Petri net model represented in PNML syntax (My model in PNML
in fig. 5), the framework first loads that model. Then, using the predefined fetch
API, tools developers can retrieve its elements and build the corresponding model
represented in their proprietary formats or perform another task.

Let us show an example of a P/T model exchanged between a proprietary
format and PNML, using PNML Framework. In this example, we focus on the
export feature from the proprietary format into PNML. That format, called
CAMI, is used in our CASE environment, CPN-AMI [25]. We have developed
an application, named PNML Converter, which uses PNML Framework create
and save API to perform the export.

318 L. Hillah et al.

Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter
1

4

4

DB()
CN(3:net,1)
CT(7:version,1,3:0.0)
PO(1,20,20)
CN(5:place,2)
CT(4:name,2,5:Ready)
CT(7:marking,2,1:4)
PO(2,226,106)
PT(2,4:name,185,107)
PT(2,7:marking,232,109)
CN(5:place,3)
......................
CA(3:arc,15,14,5)
CT(9:valuation,15,1:1)
PI(-1,15,127,130,-1)
PI(-1,15,227,130,-1)
CA(3:arc,16,5,14)
CT(9:valuation,16,1:1)
FB()

A B

Net
id=1

Page
id=pageId

Place
id=2

Name
value=Ready

........

........

C D

<pnml xmlns="...">
 <net id="1">

 <page id="pageId">

 <place id="2">
 <name>
 <text>Ready</text>

 </name>

 <initialMarking>
 <text>4</text>
 </initialMarking

</pnml>

Fig. 6. An example of model transformation from CAMI to PNML

In fig. 6, P/T model A is the graphical representation of a Petri net model
created in CPN-AMI environment. The graphical representation is transformed
into model B, the syntax of which is CAMI. Then using PNML Framework’s
create API, it is transformed into a model instance (called C in the figure) of the
standard-defined P/T Systems metamodel [18]. Finally, using the save API, it is
transformed into PNML syntax, as model D. Subsequently, there were actually
three model transformations. The first two ones are under the responsibility of
the tool designer, the role of whom we took in this example. PNML Framework
is in charge of the last one.

PNML Framework is packaged as a Java library. It provides command-line
invocation features to ease its integration in tools. For instance, once My Pro-
gram packaged with the framework as a complete translation application, that
application becomes a service for the considered tool. It will then be invoked
by providing a simple API to develop driver encapsulating users’ invocations
caught through tools interfaces. We have implemented such an approach for
CPN-AMI [25] and it was successful.

4.4 Current Work

Presently, P/T Systems are supported by the framework. The core model is of
course implemented. But since we do not consider it is a concrete Petri net type
suitable for exchange among Petri nets experts, we do not offer the possibility to
export and import it explicitly by the framework. Indeed, as explained before,
the core model is intended to set a strong basis for the definitions of concrete
Petri net types.

In further developments of this framework, we are implementing Symmet-
ric Nets. Symmetric Nets are annotated with higher-level labels and functions.
Those labels are being defined using MathML, as stated in section 3.1. In the
next section we discuss related issues to this work.

We are also planning to develop an advanced version of PNML Framework,
which will generate specific APIs for local variations on Petri net types, not

PN Standardisation: A Survey 319

specified by the standard. This will help tools developers with very specific needs
to exchange their models, provided that they share the newly generated APIs.
The normal version of the framework which is fully standard compliant will
simply discard these particular local variations. The use of this advanced version
requires deep knowledge of metamodeling and code generation techniques using
EMF’s powerful features.

5 Open Issues for Future Work

As mentionned in the previous section, high-level labels and functions are de-
fined using MathML. However, since MathML is very expressive, there are of-
ten different equivalent ways to define the same function. Consequently, it is
prone to break the interoperability and compatibility objectives through the non-
unification of the semantics, if MathML is used ”as is”. Moreover, in exchanging
automatically processed PNML higher-level models, we cannot expect a mean-
ingful interoperability to take place. Let us recall that metamodels should always
carry as much as possible a precise semantics for a specific purpose. To make
high-level labels and functions use both unambiguous and fully understandable,
we should define the metamodel that carries their semantics for higher-levels of
Petri nets (Symmetric Nets, High-level Petri Nets). This is of utmost importance
since part 3 of the standard will introduce new types of Petri nets.

Our approach to tackle this issue relies on an unambiguous schema of a sub-
set of predefined labels and functions expressed in MathML to be defined in
the standard. This schema would be mapped as a concrete syntax to the cor-
responding high-level annotations metamodel for higher-level Petri nets. This
schema corresponds to a normalised way to define abstract syntax trees for com-
plex labels (independent from any technology implementing the syntax). This
approach is consistent with the methodology adopted for the definition of the
second part of the standard, described in section 3.1. To ensure interoperability
and compliance with the standard, tools developers must enforce the use of this
predefined subset. Therefore we propose to ease the application of this require-
ment by integrating its implementation in a future version of PNML Framework.

It is of interest to experiment first this strategy to Symmetric Nets: this type
of Petri nets only allows for a restricted set of algebraic operators and no user-
defined function.

High-level Petri nets allow for a larger set of algebraic operators than Symmetric
Nets, but the user can also define his/her own functions. This last point may lead
to ambiguous representation of these functions if no normalised action (such as
strict structuration of MathML expressions) is considered. This is also a challenge,
when we consider that part 3 of the standard will introduce new types of Petri nets.

6 Conclusion

A survey of the standardisation work on Petri nets, known as ISO/IEC-15909,
is presented in this paper. The standard is structured into three parts.

320 L. Hillah et al.

Part 1 is now an International Standard. Part 2 is currently under develop-
ment. It provides the abstract definitions of significant Petri net types and their
concrete syntax. This syntax is intended to be a universal transfer format to
enable interoperability among Petri net tools. A wide adoption of the standard
among Petri net experts can thus be reached. It is called Petri Net Markup
Language (PNML). Part 3 will rely on definitions carried out by part 2. It will
define new types and variants of Petri nets. When a stable version of part 2 is
reached, the work on part 3 will start.

We are also experimenting an implementation of part 2 in PNML Framework.
PNML Framework primary purpose is to make the standard applicable. There-
fore it puts the interoperability goal into action. It offers Petri nets tools a flexible
way to remain up-to-date and comply with the standard while dealing with ex-
tensibility, compatibility and semantic issues. To cope with such issues, we are
using model engineering techniques to sustain PNML Framework development.
In [14], we set the rationale for this approach.

The first release of PNML Framework was published in March 2006 [21]. It is
implemented in Java, to achieve the cross-platform objective expressed in PNML
earliestrequirements.Weprovided inthis releaseatooldeveloper’sguideandatuto-
rial.Wealso provided an application example of conversionusingGraphViz [30]dot
format, to ease the full understanding of PNML Framework’s capabilities:

– efficient model-driven import and export tool for PNML models,
– standalone execution (outside Eclipse);
– easy integration in Petri net tools.

We are currently enhancing PNML Framework with a new type defined in the
standard: Symmetric Nets. This will assess the consistency of our approach in
PNML Framework design. Symmetric Nets are a first step towards the support
of High-level Petri Nets in the standard. We also take into account the Petri net
community feedback.

It is of interest to set up a prototype implementation project from part 2
of the standard in PNML Framework. It contributes to establish a meaningful
assessment of the standard implementation and use in the context of tools design.

Acknowledgements

We would like to thank ISO/IEC15909 editors, especially Jonathan Billington and
Ekkart Kindler, for the insightful discussions that helped us enhancing this paper.

References

1. R. Bastide, D. Buchs, M. Buffo, and F. Kordon adn O. Sy. characteristics of
currently used petri nets. Technical report, Univ. P. & M. Curie, available at
http://www-src.lip6.fr/homepages/Fabrice.Kordon/PN STD WWW/Qresult.html,
2000.

2. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent
systems using time petri nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

PN Standardisation: A Survey 321

3. J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer, L. Petrucci,
R. Post, C. Stehno, and M. Weber. The Petri Net Markup Language: Concepts,
technology and tools. In Proc. 24th Int. Conf. Application and Theory of Petri
Nets (ICATPN’2003), Eindhoven, The Netherlands, June 2003, volume 2679 of
Lecture Notes in Computer Science, pages 483–505. Springer, 2003.

4. Brauer, W., Reisig, W., and Rozenberg, G., editors. Petri Nets: Central Models
and Their Properties., volume 254. Springer-Verlag Lecture Notes in Computer
Science: Advances in Petri Nets 1986, Part I, Proceedings of an Advanced Course,
Bad Honnef, September 1986, 1987.

5. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. Eclipse Modeling
Framework. The Eclipse Series. Addison-Wesley Professional, August 2003.

6. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed
Coloured Nets and their symbolic reachability graph. In G. Rozenberg and
K. Jensen, editors, LNCS : High Level Petri Nets. Theory and Application. Springer
Verlag, June 1991.

7. J. Clark. RELAX NG Home Page. OASIS, http://www.relaxng.org/, 2003.
8. M. Diaz. Vérification et mise en oeuvre des réseaux de Petri. Hermes Sciences -

Lavoisier, 2003.
9. GreatSPN: GRaphical Editor, Analyzer for Timed, and Stochastic Petri Nets. url:

http://www.di.unito.it/~greatspn/.
10. International Organization for Standardization. International harmonized stage

codes. ISO, http://www.iso.org/iso/en/widepages/stagetable.html#95.
11. Eclipse Foundation. Eclipse Modeling Framework. http://www.eclipse.org/emf/.
12. H. J. Genrich. Predicate/transition nets. In Brauer, W., Reisig, W., and Rozenberg,

G., editors, Lecture Notes in Computer Science: Petri Nets: Central Models and
Their Properties, Advances in Petri Nets 1986, Part I, Proceedings of an Advanced
Course, Bad Honnef, September 1986, volume 254, pages 207–247. Springer-Verlag,
1987. NewsletterInfo: 27.

13. Parallel Systems Group. Programming Environment based on Petri Nets. Univer-
sity of Oldenburg, http://theoretica.informatik.uni-oldenburg.de/~pep/.

14. L. Hillah, F.Kordon, L. Petrucci, and N. Trèves. Model engineering on petri nets
for iso/iec 15909-2: Api framework for petri net types metamodels. Petri Net
Newsletter, (69):22–40, October 2005.

15. ISO/IEC. Software and Systems Engineering - High-level Petri Nets, Part 1: Con-
cepts, Definitions and Graphical Notation, International Standard ISO/IEC 15909,
December 2004.

16. K. Jensen. Coloured petri nets - basic concepts, analysis methods and practical
use, vol. 3: Practical use. EATCS Monographs on Theoretical Computer Science,
1997.

17. Jensen, K. and Rozenberg, G., editors. High-Level Petri Nets. Berlin, Germany:
Springer-Verlag, 1991. NewsletterInfo: 39.

18. E. Kindler. Software and Systems Engineering - High-level Petri Nets. Part2:
Transfert Format. Working Draft for the International Standard ISO/IEC 15909
Part 2 - Version 0.9.0, June 2005.

19. E. Kindler. The petri net markup language and iso/iec 15909-2: Concepts, status,
and future directions. In Entwurf komplexer Automatisierungssysteme, To appear.

20. F. Kordon and L. Petrucci. Proposal for an addendum to ISO/IEC 15909-1, doc-
ument reference MAL-12. NWI For the Malaga Meeting, November 2004.

21. Modeling and Verification Department. PNML Framework. LIP6,
http://www.lip6.fr/pnml.

http://www.relaxng.org/
http://www.di.unito.it/~greatspn/
http://www.eclipse.org/emf/
http://theoretica.informatik.uni-oldenburg.de/~pep/
http://www.lip6.fr/pnml

322 L. Hillah et al.

22. University of Aarhus. Computer Tool for Coloured Petri Nets - CPNTool.
http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

23. OMG. MetaObjectFacility 2.0 Core Specification, document no:omg/2003-10-04.
OMG, October 2003.

24. OMG. OCL 2.0 Specification - Version 2.0 ptc/2005-06-06. OMG, June 2005.
25. The CPN-AMI Home page. url : http://www.lip6.fr/cpn-ami.
26. J. Peterson. Petri Net Theory and the Modeling of Systems. Englewood Cliffs,

New Jersey: Prentice Hall, Inc., 1981.
27. Remko Popma. Introduction to JET. Azzurri Ltd., http://eclipse.org/emf/

docs.php?doc=tutorials/jet1/jet tutorial1.html, 2005.
28. W. Reisig. Petri Nets., volume 4. Springer-Verlag EATCS Monographs on Theo-

retical Computer Science, original edition, 1985. NewsletterInfo: 19 translation of
the German: “W. Reisig, Petrinetze. (1982)”.

29. W. Reisig. Petri nets and algebraic specifications. Theoretical Computer Science,
80:1–34, 1991. NewsletterInfo: 38,39.

30. AT&T Research. GraphViz. http://www.graphviz.org/.
31. W3C. MathML 2.0, W3C Math Home. W3C, http://www.w3.org/Math/.

http://wiki.daimi.au.dk/cpntools/cpntools.wiki
http://www.lip6.fr/cpn-ami
http://eclipse.org/emf/docs.php?doc=tutorials/jet1/jet_tutorial1.html
http://eclipse.org/emf/docs.php?doc=tutorials/jet1/jet_tutorial1.html
http://www.graphviz.org/
http://www.w3.org/Math/

	The Challenge of PN Standardisation
	The Structure of the Standard
	Part 1
	Part 2

	Current Implementation of Part 2
	PNML Design
	The First Impact: PNML Framework

	PNML Framework
	Goals of PNML Framework
	Features of PNML Framework
	Using PNML Framework
	Current Work

	Open Issues for Future Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

