Structure of Abstract Syntax trees
for Colored Nets in PNML

F. Kordon & L. Petrucci
Fabri ce. Kordon@i p6. fr
Laure. Petrucci @i pn. univ-parisl3.fr

version 0.2 (draft)

June 26, 2004

Abstract

Formalising the description of a Coloured Petri Net easegtiplementation
of tools based on such a representation. We propose in thiswknt a structure
to represent of places, arcs, and transitions by means whabsyntax trees to be
used in the standardised representation for Petri nets podposed as ISO-IEC
15909 — part 2.

This document will only deal with information that is not qquted in Petri
nets. Hence, information such as the name of a place or aitiosnas well
as graphical information are neither mentioned nor desdritWe focus on the
extensions required for handling high-level features only

This document mainly focuses on the abstract syntax treestste. The
translation into XML should be performed when an agreemarthé proposal
is reached.

Contents

1

Introduction 3

1.1
1.2
1.3
1.4
15
1.6

Behavior of a Well Formed PetriNets 3
Declarative part of a Well Formed PetriNets 4
Predefined color functions 4
Place Typeand Marking 5
Arcterms 5
Transition Conditions 5

Proposed Structure for Abstract Syntax Trees 5

2.1

2.2

2.3
2.4
2.5

Globaldeclarations 6
2.1.1 Macrodefinitions 6
212 BaSiICTYPES . . . v v v o e i e e 6
2.1.3 TypeDefiniton 7
2.1.4 \Variable Declaration 7
2.1.5 Global Declarations 8
Expressions 8
2.2.1 Generalexpressions 9
2.2.2 Booleanexpressions 9
Places e 10
AICS . . . e 11
Transitions 12

1 Introduction

1 This document is a proposal contributing to part 2 of the 1SOQ0B standard. It
is based on [1].

2 We propose to base the Colored Petri net standard on thelfdetfngition of Well
Formed Petri Nets, proposed in [2] (called WFPN in the reshisf document).
The incentive for that choice is that WFPN correspond to achigpe of high
level Petri nets for which the theory is sufficiently stromglare equipped with a
sufficient number of high level features. WFPN are suppditeskveral tools [4,
3] and a stochastic extension allows for performance etialuaThis last point
is of interest since the standard has to consider seveaigrins that should be
compatible.

3 Well Formed Petri Nets are a high-level net model that inelycbesides the
graphical features of a Petri net - places, transitions ancl their names - more
complex annotations:

markings and tokens,

types and initial markings of places,
e transition conditions,

arc terms,

4 All these require an enriched syntax.

5 The additional information we previously enumerated isdufee the definition
of the semantics of a Well Formed Petri Nets, which is briefigd anformally
described in the next subsections.

1.1 Behavior of a Well Formed Petri Nets

6 The behavior of a Well Formed Petri Net is controlled by theeaet of rules
used for general colored nets:

e Atypeis associated with each place and transition of theahdlements
of these domains are called colors.

e Each token in a place is colored by an element of the place(sg@eral
tokens may have the same color). The marking of a place isthudtiset
of colors - a set in which an element may occur several times.

e The enabling and firing rule comply with clause 7 of [1]. Foransition
mode to occur, each input place of the transition must corgtaufficient
(possibly null) number of tokens for every color of the pldoenain. These
tokens will be taken from the place when the transition fi&milarly, the
firing will produce colored tokens in the output places oftitamsition. As
in Petri nets, the arcs annotations determine the numbekehs to be
taken or produced. However, this annotation is now a fundisociating
a multiset of colors of the place type with each mode of theditaon.

e The mode used to enable a transition must satisfy some ptedialled
transition condition (clause 7.4.1in [1]).

1.2 Declarative part of a Well Formed Petri Nets

7 The description of a Well Formed Petri Nets net is composesvofparts: the
first part contains the declaration of the Petri net (plat@sisitions and arcs).
This declaration is included in the present model and takesepn the first part
of the PNML standard. We describe in the second part, allidiie-level features
of the model for which we give the syntactic constructioresul

8 These high-level annotations are listed in sections 1.4.60 However, their
description, i.e., the description of types, markingsnsrdon conditions must
refer to the type definitions of the model.

9 These descriptions are done in different extensions of tdredard that are alll
optional :

e The class declaration section defines object classes. Tketslare the
elementary entities (sites, memories, etc.) that appehaeidescription of
the model,

e The domain declaration section defines the set of color dwressociated
with the different places and transitions of the net. A calssociates one
or several elements in a tuple;

e The variable declaration section defines the name and thaiddmwhich
variables used for the valuation of the arcs belong.

e The macro declaration allows parameterization of expoessi

1.3 Predefined color functions

10 The only predefined color functions are:

e ++n(x) thatincrements a variabkeof valuen. This is a circular increment
as defined in [2].

e — —n(x) that decrements a variabteof valuen. This is a circular decre-
ment as defined in [2].

e D.all that associates, for color tyf# a token for each possible value of
the color typé.

e < Xi,...,Xn > that aggregates several tokens into a structured one.dmpli
itly, the extraction function is defined as the one that afi@xtraction of a
component in a structured token.

11 Boolean functions are also available to compare tokens:
e — and+# allow to compare two tokens having the same color type.

e <, >, > and< allow sorted comparison for class tokens only. As in pro-
gramming languages, there are no predefined operatorseee tompar-
isons on composed types. Such operators may be defined rs@xis.

12 Finally boolean functions can be used to combine compafisoctions on to-
kens:

Lall is usually named: "broadcast function”.

e AND corresponds to the boolean product.
e ORcorresponds to the boolean addition.
e NOT corresponds to the negation operator.

13 The priority between these boolean operators is the oneraflitional” lan-
guagesNOT is evaluated prior t&AND which is evaluated prior tOR.

1.4 Place Type and Marking

14 Since token presentin places are colored, a place must bei@gsl with a color
type. Types may be basic (e.g. integer or enumeration) dtrupon basic types
using e.g. cartesian product (see aggregation functioadsos 1.3). A place
without type is assumed to contain untyped tokens (as in Rets).

15 Thus, a label contains the name of the color type for tokemredtin the corre-
sponding place. This label should be an identifier.

16 The initial marking is part of the information associatedhithe place. A mark-
ing is described as a set of tokens that may have a multiplicgater than 1. It
is possible to use thieroadcast function to define the initial marking of a place
in a compact manner (see section 1.3).

17 If the domain of the place iaull, the place is considered as a P/T one and the
only possible labels are positive integers.

1.5 Arcterms

18 The terms are built from predefined operations and varialagdisted in 1.3,
paragraph 10). If not defined, it is assumed that the arc Aatazhices one un-
typed token from/to the connected place.

1.6 Transition Conditions

19 The aim of a guard is to restrict the possible bindings of aditeon by adding
constraints on the variables. The guards are not defined artecplar section.
They only appear in the information associated with a ttaorsi

20 The conditions included in the definition of WFPN can compa@terms, pos-
sibly with variables. Both terms must belong to the same.tyfjfie comparison
operators are those of section 1.3, paragraph 11.

21 Conditions can be combined using usual boolean func#®i3, OR andNOT

(see section 1.3, paragraph 12). It is also possible to adkhfieeses to locate
sub-expressions.

2 Proposed Structure for Abstract Syntax Trees

22 This section details all the possible abstract syntax tf&83) identified to de-

5

scribe unambiguously a WFPN in the PNML format. We focus @anttbe struc-
ture that could be easily expressed using XML.

23 We outline the following four types of AST for:
global declaration (i.e. global to the whole fet

places,
e arcs,
transitions.

2.1 Global declarations
2.1.1 Macro definitions

RDB: these macros should help to define constants to enatampégerization of
the model. Basically, the idea is to replace a macro by agstriepresenting a
number, a label, etc.) directly in the abstract syntax toféise description.

2.1.2 Basic Types

24 The Abstract syntax tree associated with a basic type shesjgect the structure
provided in figure 1. The root node is labeled by the keywB#&ICTYPE and
has two subtrees:

e the first one corresponds to a string node and is the name bésie type,

e the second one describes the type content and refers tortiotuse pre-

BASICTYPE

sented in Figure 2.

Figure 1: Structure of an AST describing a basic type.

25 A basic type may be an integer class (with possible boundah@numeration
type. According to these possibilities, the definition of tlype content has to
respect one of the two structures presented in Figure 2.

26 The left subtree of Figure 2 corresponds to an integer-tgogent. The root is
labeled by the keywortNTEGER. If it has no subtree, then it corresponds to the
default integer class supported by the standard. Otherivisentains two nodes
that have integer values. The first one contains the lowenéand the second
one the upper bound.

2There should be some way to factor out declarations wheridemisg hierarchically described Petri
Nets.

27 The right subtree of Figure 2 corresponds to an enumeratedgptent. The

28

29

30

31

root is labeled by the keywofeNUM. The subtrees list all the possible values in
the type ; these nodes labels are strings correspondingetermmeration value.
Values are totally ordered based on the order they appeheintistract syntax
tree: the first subtree (leftmost) corresponds to the "l¢¥wedue of the type and
the last one (rightmost) to the "highest”.

Figure 2: Structure of an AST defining the content of a bagie ty

2.1.3 Type Definition

A type is a cartesian product of types (basic or not).

Its structure should conform to the tree in figure 3. The ramenis labeled by
the keywordTYPE. The left subtree is labeled by a string providing the name
of the color type. The right subtree root is labeled by thenayl PRODUCT.
Under this node, there are as many nodes as involved coler Tipes" subtree

is labeled by the identifier of the color type of tH& component.

Figure 3: Structure of an AST describing a color type.

2.1.4 Variable Declaration

A variable may contain any value of a given color type.

It should be declared and associated with the correspordingtype. The cor-
responding abstract syntax tree must respect the strystesented in figure 4.
The root node is labeled by the keywovdR. The first subtree (leftmost) is
labeled by a string that identifies the variable name and ¢lcersd subtree is
labeled by the name of the type.

Figure 4: Structure of an AST describing a variable dedlamnat

2.1.5 Global Declarations

32 Global declarations gather all types and variables detiara Petri net

33 The global declaration abstract syntax tree appears oy imthe modéland
is structured as shown in figure 5. The root node is labelechbykeyword
DECLARATIONS and has three subtrees:

e the first one has a root labeled by the keywB&SICTYPES. Below this
node, there is one subtree per basic type. These subtrepestése struc-
ture defined in section 2.1.2.

e the second one has a root labeled by the keyWdRES. Below this node,
there is one subtree per type. These subtrees respectubtistrdefined
in section 2.1.3.

e thelast one has arootlabeled by the keywsk&S. Below this node, there
is one subtree per variable. These subtrees respect tiotustrdefined in
section 2.1.4. If there are no variable declared in the madldeVARS node
has no subtree.

DECLARATIONS

Figure 5: Structure of an AST describing global declaration

2.2 Expressions

34 This section defines abstracts syntax trees that corresjooexipressions that
can be used to represent the initial marking of places, &rmsst or transitions
conditions.

Sor in a sub-Petri net model if hierarchical nets are considie¥isibility rules should be defined then.
4or in the Petri net component.

35 There are two types of expressions:
e general expressions that define one or more tokens.

e boolean expressions that can refer to color tokens or c@dables but
involve boolean operators only,

2.2.1 General expressions

36 Figure 6 shows the general structure of a general expresgenwhich is re-
cursive. The root of a general expression abstract treéédd by the keyword
EXPR. The first subtree is a string that designates the functidretapplied and
the other subtrees are the required parameters. Pararaeteepresented using
general expression abstract syntax trees.

Figure 6: Structure of an AST describing a general exprassio

37 Table 1 references all the predefined functions that arevatidor WFPN.

38 For thevarref operator, the second subtree is reduced to a node labeled by a
string.

39 For thecongt operator, the second subtree is reduced to a node labelestiiyg
that represents the value of the constant. Let us note tirahiécons function,
the type of the value can be deduced from the "surroundinfgiimation (color
type of a place, associated variable in a comparison, etc.).

40 For theint operator, the second subtree is reduced to a node labeletdihieger
value.

2.2.2 Boolean expressions

41 Figure 7 shows the general structure of an expression trigiehvis also recur-
sive. The root of a boolean expression abstract tree isddd®} the keyword
BEXPR. The first subtree is a string that designates the functidmetapplied
and the next subtrees are the required parameters.

42 Table 2 references all the boolean functions that are aldaeWFPN.

SUser-defined functions should be handled in an extensioni®farmat. Can it be independent from
a given tool?

6User-defined functions should be handled in an extensidnisfarmat. Can it be independent from
a given tool?

Function| Parameter(s) Definition
—— variable or token constant; pos-predecessor function of rank N

itive

++ variable or token constant; pos-successor function of rank N
itive

X natural; expression, variable gr multiplication of the expression
token constant

+ two expressions, variables grset addition of two expressions

token constants
— two expressions, variables orset substraction of two expressions
token constants

al a color class or a color domain broadcast function that associates gne
token of each possible color of the class
or domain.

product | atleast one expression cartesian product of the involved ex-
pressions

extract | an expression; a positive extraction of then™ element in a prod-

uct that is represented by an expression
(for example, a reference to a structured

variable)

varref one identifier reference to a declared variable

const one identifier reference a valid value of a color clas$

int integer value reference to a integer constant for use
when necessary in the structure of an
expression

Table 1: List of predefined non boolean operators.

BEXPR

Figure 7: Structure of an AST describing a boolean exprassio

2.3 Places

43 Each place has to reference a declared color type. The ebsymatax tree is
reduced to a node labeled by a color class or a color domaie. strimgnull
denotes the absence of color type (tokens in the place aypathtokens).

44 Each place may reference a marking. If absent, the defaukinggof a place is
assumed to be "no token”.

45 The description of a place marking has to respect the strigitesented in fig-
ure 8. The root of the abstract syntax tree is labeled usiadéywordVARK-
ING. This root has only one subtree that is a general express@en(see sec-
tion 2.2.1) with the following restrictions:

o if the color type associated with the placenid! (no color type), then the
expression is an integer expression (functiat) that denotes the number

10

Function| Parameter(s) Definition

> 2 expressions corresponding focomparison (greater than)
an elementary tokens

< 2 expressions corresponding focomparison (less than)
an elementary tokens

> 2 expressions corresponding focomparison (greater or equal than)
an elementary tokens

< 2 expressions corresponding focomparison (less or equal than)
an elementary tokens

= 2 expressions corresponding focomparison (equal)
a token

#* 2 expressions corresponding focomparison (different)
a token

and 2 boolean expressions booleanand

or 2 boolean expressions booleanor

not 1 boolean expression boolean negation

true none true boolean function

false none false boolean function

Table 2: List of boolean operators.

Figure 8: Structure of an AST describing the marking of a@lac

of non colored tokens located in the place.

o if there is a color type associated with the place, then tlirea should
denote a finite number of tokens. Thus, only the followingctions can
be found in the definition of the marking: (when several tokens have the
same profile)4 (union of tokens)all (the broadcast function}; (sub-
traction from a set of tokeriy
all is a faster way to enumerate all the values of a color type.
product allows to build structured tokens.
cong references a possible value of the type.
int refers to any integer value when necessary.

2.4 Arcs

46 The description of an arc term has to respect the struct@septed in figure 9.
The root of the abstract syntax tree is labeled using the &eyWTERM. This
root has only one subtree that is a boolean expression geséstion 2.2.2) with
the following restrictions:

"It is typically associated with the broadcast function,dsample, Gall — val ue that means "all the
possible values for class C except the one that is listed”.

11

e when the arc is connected to a untyped place, Then the PNMitiaotfor
Petri net is assumed.

e the root function below th&TERM can only be tagged by (union of
tokens),— (substraction from a set of tokengyoduct (to build structured
tokens),x (when several tokens have the same proféH)(the broadcast
function),varref (to use a color variable that is declared and visible).

e below the root of the expression (see previous item), altesgion func-
tions can be referenced.

Figure 9: Structure of an AST describing arc terms.

2.5 Transitions

47 Atransition may have a condition that prevents its firingdome bindings. If no
condition description is supplied, then a default value is assumed. It means
that the transition can be fired for any possible bindingsftbe input places.

48 The description of a transition condition has to respectstinecture presented
in figure 10. The root of the abstract syntax tree is labelédguthe keyword
TCOND. This root has only one subtree that is a boolean expressien(see
section 2.2.2) with the following restriction. The genegapressions contained
in the boolean expression tree can only contain the follgiimctions:—— and
++ (to compare a modified input tokergroduct (to hold a structured token) ,
extract (to extract a component in a structured token when necéssaayref
(to reference a color variable of an input arc labedpst (to denote a valid value
of a color class)int (to refer any integer when it is necessary).

Figure 10: Structure of an AST describing the condition abasition.

49 Note that a transition may have a condition only if at leag ofiits input places
contains colored tokens.

12

References

[1] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Hatldan Well-Formed
Coloured Nets and their symbolic reachability graph. In Gz&berg and
K. Jensen, editord,NCS : High Level Petri Nets. Theory and Application.
Springer Verlag, June 1991.

[2] GreatSPN: GRaphical Editor, Analyzer for Timed, andcBtastic Petri Nets.
url : http:// www di.unito.it/~greatspn/.

[3] The CPN-AMI Home page. urlhttp:// www. | ip6.fr/cpn-am .

13

