Towards a coloured Petri nets semantics for a chronicle language

Olivier Bertrand, Patrice Carle DPRS/TCS
Christine Choppy LIPN Université Paris Xlll
Context

- Behaviour analysis of HLA distributed simulation
 - HLA: High Level Architecture: IEEE interoperability standard

- Using activities recognition techniques

- Activities are denoted by chronicles
Chronicle and their recognition

• Chronicles
 • Describe an event pattern
 • Events relationships:
 • Logical
 • Temporal

• Chronicle recognition:
 • Identify the chronicle patterns that are searched for in the observed event flow
 • Characteristic:
 • Find all instances of a searched chronicle
 • Store events that contributed to the recognition

occurrences of a followed by b
Chronicle language

• Logical operators
 • And : A & B
 • Or : A || B

• Temporal operators
 • Sequence : A B
 • Absence : (A B)-[C]
 • Absence and Sequence can be used to represent timed constraint
 • Minimum delay : A 5 B
 • Maximum delay (A B)-[5]

• Operator composition
 • (A || B) (C || D)
Chronicle modelling

• Using coloured Petri Nets
• Each chronicle event is represented by a transition
• Event occurrence is associated with firing the corresponding transitions

• We use specific nets (modelled with CPN tools):
 • One token per place (type CList or Boolean)
 • Complex list functions
 • colset Event with a|b|c|d;
 • colset ChronInst= list Event;
 • colset CList= list ChronInst;
Basic operators

- Basic event recognition

Event flow: \(a \ a \)
Basic operator: or

Diagram:

- A
- B
- Success

A instance [a] ins instance
B instance [b] ins instance
Success
CList

Diagram details:
- A instance
- B instance
- Success
- CList
- [a]
- [b]
Basic operators (A B) -[C]

- Absence operator (sequence)
Basic operators (A B) - [C]

Event flow: “a b b c b”
Basic operators (A B) -[C]

Event flow: “a b b c b”
Basic operators (A B) -[C]

Event flow: “a b b c b”
Basic operators (A B) - [C]

Event flow: “a b b c b”
Basic operators (A B) -[C]

Event flow: “a b b c b”
Basic net: time constraint

Minimum delay: A 5 B
Basic net: time constraint

Minimum delay: A 5 B

Event flow: “a 6 b”
Basic net : time constraint

Minimum delay : A 5 B

Event flow : “a 6 b”
Basic net: time constraint

Minimum delay: A 5 B

Event flow: “a 6 b”
Basic net: time constraint

Maximum delay: (A B)-[5]
Chronicles composition

• Goal: modelling the chronicle algebra

• We must model operators composition

• 2 ways:
 • Transition substitution
 • Places fusion
Transition Substitution

- Operators nets:

 Sequence

 Absence

 Conjunction

 Disjunction

- Event recognition:

 Start

 CList

 curr

 [curr != [] or else act]

 First

 BOOL

 true

 act

 instance

 instance^^H1st(a, curr)

 Success

 CList

 []
Transition substitution : the chronicle A (B C)
Transition substitution : the chronicle A (B C)
Recognition of A (B C)

Event flow: “a b b c”
Recognition of A (B C)

Event flow: “a b b c”
Recognition of A (B C)

Event flow: “a b b c”
Recognition of A (B C)

Event flow: “a b b c”
Event flow: “a b b c”
(A || B) (C || D) with transition substitution
Composition with place fusion

• Introducing another method to compose nets

• Motivations:
 • Easier than transition substitution
 • Visual correspondence with algebra operator composition
Chronicle A (B C) with place fusion
Chronicle A (B C) with place fusion

Event flow: “a b b c”
Chronicle A (B C) with place fusion

Event flow : "a b b c"
Chronicle A (B C) with place fusion

Event flow: “a b b c”
Chronicle A (B C) with place fusion

Event flow: “a b b c”
And operator with place fusion

\[\text{B} \quad \text{Success} \]

\[\text{Start} \quad \text{CList} \]

\[\text{First} \quad \text{BOOL} \]

\[\text{true} \quad \text{act} \]

\[\text{instance} \]

\[\text{curr} \quad [\text{curr} != \text{[]} \quad \text{orelse act}] \]

\[\text{instance} \quad \text{^^H1st(a,curr)} \]

\[\text{success} \quad \text{CList} \]

\[\text{Temp} \quad \text{SuccessAB} \]

\[\text{curr} \quad \text{chrAnd(curr)} \]

\[\text{And} \quad \text{CList} \]

\[\text{[]} \]

\[\text{Start} \quad \text{CList} \]

\[\text{First} \quad \text{BOOL} \]

\[\text{true} \quad \text{act} \]

\[\text{instance} \]

\[\text{curr} \quad [\text{curr} != \text{[]} \quad \text{orelse act}] \]

\[\text{instance} \quad \text{^^H1st(b,curr)} \]

\[\text{success} \quad \text{CList} \]

\[\text{Success} \quad \text{CList} \]

\[\text{[]} \]
Or operator with place fusion
Absence operator with place fusion
Chronicle (A || B) (C || D)
Comparison

- Both methods produce the same results
 - Example with the A (B C) chronicle
- Both methods have the same expressiveness
- Place fusion nets are easier to read
- And easier to model with CPN tools
Conclusion

- We have nets for
 - Event recognition
 - Each operator
 - Formalise the composition
 - Two ways for the composition

- CRS/Onera works with HLA simulation

- Future works:
 - Integrating time representation in composition
 - Formalise the net subset
 - Extend the models with sub-chronicle and their absence
Application example

Chronicle detection