Timed automata with parametric updates

Mefosyloma 2018\(^1\)

Étienne André *, Didier Lime ** & Mathias Ramparison*

* LIPN, Université Paris 13
** LS2N, École Centrale de Nantes

May 18, 2018

\(^1\) To be presented at ACSD 2018
Example of timed automaton

A timed automaton [AD94] which models a coffee machine

serve:
$y = 8$

压按: $x := 0$
$y := 0$
再按: $y \leq 5$, $x > 1$
$x := 0$

准备: $y = 5$

📍 Locations: $\{l_1, l_2, l_3\}$, clocks: $\{x, y\}$, action: $\{\text{press, press again, prepare, serve}\}$

- $\text{Guard(press again)} = \{y \leq 5 \land x \geq 0\}$,
 $\text{Guard(prepare)} = \{y = 5\}$, $\text{Guard(serve)} = \{y = 8\}$

- $\text{Reset(press)} = \{x, y := 0\}$, $\text{Reset(press again)} = \{x := 0\}$
Example of timed automaton

A timed automaton which models a coffee machine [Alur and Dill, 1994]

serve:
\[y = 8 \]

A run:
\[(l_1, (0, 0)) \xrightarrow{\text{press}} (l_2, (0, 0)) \xrightarrow{\text{press again}} (l_2, (0, 1.2)) \xrightarrow{\text{prepare}} (l_3, (3.8, 5)) \xrightarrow{\text{serve}} (l_1, (6.8, 8)) \]

triple (location, (value of x, value of y)) and \(\xrightarrow{\text{name}} \) discrete transition “name” after a delay \(\delta \).
Example of parametric timed automaton

What if all constants are not specified ahead?

A parametric timed automaton [AHV93] which models a parametric coffee machine

serve:
\[y = p_2 \]

press:
\[x := 0 \]
\[y := 0 \]

press again:
\[y \leq 5, \ x > 1 \]
\[x := 0 \]

prepare:
\[y = p_1 \]

A possible run if \(p_1 = 2, p_2 = 3 \):

\[(l_1, (0, 0)) \xrightarrow{\text{press} \ 2} (l_2, (0, 0)) \xrightarrow{\text{press again} \ 1} (l_2, (0, 1)) \xrightarrow{\text{prepare} \ 1} (l_3, (1, 2)) \xrightarrow{\text{serve} \ 1} (l_1, (2, 3))\]

The same run is impossible if \(p_1 = 5, p_2 = 2 \), or \(p_1 < 1 \).
Common decision problems for timed automata

- **Reachability**: Is there a run such that the location \(l \) is reachable?
- **Universality**: For all runs, is the location \(l \) reachable?
Common decision problems for timed automata

- **Reachability**: Is there a run such that the location \(l \) is reachable?

- **Universality**: For all runs, is the location \(l \) reachable?

- Proved decidable [AD94]. Strategy: construct a finite automaton using an abstraction of clock valuations (clock regions)
Common decision problems for parametric timed automata

▶ **EF-emptiness**: Is there a parameter valuation s.t. there exists a run reaching l in the instantiated TA?

EF-synthesis: Compute all parameter valuations s.t. there exists a run reaching l in the instantiated TA?
Common decision problems for parametric timed automata

- **EF-emptiness**: Is there a parameter valuation s.t. there exists a run reaching *l* in the instantiated TA?
- **EF-synthesis**: Compute all parameter valuations s.t. there exists a run reaching *l* in the instantiated TA?

EF-emptiness problem: proved undecidable in general case [AHV93], unbounded integer-valued parameters, (un)bounded rational valued parameters and even with only one bounded parameter [Mil00]
Common decision problems for parametric timed automata

- **EF-emptiness**: Is there a parameter valuation s.t. there exists a run reaching l in the instantiated TA?
- **EF-synthesis**: Compute all parameter valuations s.t. there exists a run reaching l in the instantiated TA?

EF-emptiness problem: proved undecidable in general case [AHV93], unbounded integer-valued parameters, (un)bounded rational valued parameters and even with only one bounded parameter [Mil00]

Need to add restrictions on parameters, or restrain the PTA syntax
Contributions

- As almost everything is undecidable, we try to remove parameters from guards and invariants.
- The reachability problem is decidable for timed automata with updates to integer constants [BDFP04].
Contributions

- As almost everything is undecidable, we try to remove parameters from guards and invariants.
- The reachability problem is decidable for timed automata with updates to integer constants [BDFP04].
- New formalism with parametric updates of clocks: update-to-parameter TA (U2P-TA)
- One undecidability result and one decidability result
U2P-TA

Update-to-parameter TA (U2P-TA) with two rational-valued parameters p_1, p_2:

- Press: $x := 0$
- $y := p_1$
- Prepare: $y = 5$
- Press again: $y \leq 5, x > 1$
- $x := p_2$
- Serve: $y = 8$

Parametric clock updates: $y := p_1, x := p_2$.
Theorem

The EF-emptiness problem is undecidable for bounded rational-valued U2P-TAs

Proof sketch: we prove that a PTA can be transformed into an U2P-TA, using K_{MAX} the maximum value between constants and parameters appearing in guards.

![Figure: A PTA A](image1)

![Figure: A U2P-TA obtained from A](image2)
As we can transform any unbounded rational-valued U2P-TA into a bounded rational-valued U2P-TA:

Theorem

The EF-emptiness problem is undecidable for unbounded rational-valued U2P-TAs
U2P-TAs with integer-valued parameters.
U2P-TAs with \textit{integer-valued} parameters.

\textbf{Theorem}

\textit{EF-synthesis is computable for \textit{unbounded integer-valued} U2P-TAs.}
Integer-valued U2P-TA

U2P-TAs with integer-valued parameters.

Theorem

EF-synthesis is computable for unbounded integer-valued U2P-TAs.

... and the *EF*-emptiness problem is decidable, *unlike integer-valued PTAs* [AHV93,BBLS15].

Proof sketch: using equivalence between parameter valuations if $> K_{\text{MAX}}$, we enumerate parameter valuations $\leq K_{\text{MAX}}$.
Conclusion

Two new subclasses of PTAs: rational-valued U2P-TAs for which the EF-emptiness problem is undecidable, and integer-valued U2P-TAs for which it is decidable.
Conclusion

- Two new subclasses of PTAs: rational-valued U2P-TAs for which the EF-emptiness problem is undecidable, and integer-valued U2P-TAs for which it is decidable.

Future work:
- Find syntactic restrictions in order to find a decidability result for rational parameter valuations
- Adapt our formalism to hybrid systems, in which clocks can evolve at different rates
References

Rajeev Alur and David L. Dill.
A theory of timed automata.

Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi.
Parametric real-time reasoning.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, *STOC*,

Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit.
Updatable timed automata.

Joseph S. Miller.
Decidability and complexity results for timed automata and semi-linear hybrid automata.
Clock regions

- The corner point: \(R_1 = \{(4, 4)\} \)
- The vertical line: \(R_2 = \{(x, y) \mid x = 2, 0 < y < 1\} \)
- The horizontal line: \(R_3 = \{(x, y) \mid y = 3, 1 < x < 2\} \)
- The diagonal: \(R_4 = \{(x, y) \mid x = y - 3, 4 < y < 5\} \)
- The upward triangle: \(R_5 = \{(x, y) \mid 0 < x < y - 1, 1 < y < 2\} \)
- The downward triangle: \(R_6 = \{(x, y) \mid y + 1 < x < 4, 2 < y < 3\} \)
Clock regions

Two clocks x, y, max constants $c_x = 2, c_y = 1$. Time successors of the blue region
\{0 < y < 1, 0 < y < x - 1\} different of itself: four regions in green: \{0 < y < 1, x = 2\}, \{0 < y < 1, x > 2\}, \{y = 1, x > 2\} and \{y > 1, x > 2\}
Using regions for parametric timed automata?

\[x = p \rightarrow x := 0 \]

In \(l_1 \): \((x, y) = (0, p)\)

But after letting some time elapse, depending on the value of \(0 < p < 1\) we reach different regions:

- region \(y = 1\), \(0 < x < p\) if \(1 > p > \frac{1}{2}\)
Using regions for parametric timed automata?

\[l_0 \xrightarrow{x = p \rightarrow x := 0} l_1 \quad \text{and} \quad l_1 \xrightarrow{y = 1 \land x = p} l_2 \]

In \(l_1 \): \((x, y) = (0, p) \)

But after letting some time elapse, depending on the value of \(0 < p < 1 \) we access different regions:

- region \(y = 1, x = p \) if \(p = \frac{1}{2} \)
Using regions for parametric timed automata?

In l_1: $(x, y) = (0, p)$

But after letting some time elapse, depending on the value of $0 < p < 1$ we access different regions:

- region $p < y < 1$, $x = p$ if $p < \frac{1}{2}$
U2P-TA

\[2 - \frac{p_2}{2} \]

\[2 - \frac{p_1}{2} \]

\[1 - \frac{p_1}{2} \]

\[\frac{p_1}{2} \]

\[1 - \frac{p_2}{2} \]

\[\frac{p_2}{2} \]
Timed automata
Parametric timed automata
PTA and related decidability problems
Common decision problems of timed automata
Common decision problems of parametric timed automata
Contributions
U2P-TA
Integer-valued U2P-TA
Conclusion
References
Example

(a) Committee A

\[x = 2 \]
\[\text{com\text{A}} \]
\[x := 0 \]

(b) Committee B

\[y = 3 \]
\[\text{com\text{B}} \]
\[y := 0 \]

(c) A PhD student’s defense workflow

\[t := p_m \]
\[x := p_A \]
\[y := p_B \]

Figure: A motivating example of integer-valued U2P-TA
Graphical visualization in two dimensions of the parameter synthesis of with $p_m = 6$ (left) and $p_m = 9$ (right) provided by IMITATOR. Constraints are:

\[
\begin{align*}
p_A &\leq 2 \land p_B \leq p_A + 1 \\
\lor \\
p_B &\geq 2 \land p_B \leq 3 \land p_B \geq p_A + 1
\end{align*}
\]

with $p_m = 6$

\[
\begin{align*}
p_B &\geq 2 \land p_A \leq 2 \land p_A + 1 \geq p_B
\end{align*}
\]

with $p_m = 9$